首页 > 系统相关 >深入浅出 Linux 中的 ARM IOMMU SMMU II

深入浅出 Linux 中的 ARM IOMMU SMMU II

时间:2023-11-17 18:33:06浏览次数:57  
标签:SMMU group struct iommu smmu dev II domain IOMMU

SMMU 驱动中的系统 I/O 设备探测

要使系统 I/O 设备的 DMA 内存访问能通过 IOMMU,需要将系统 I/O 设备和 IOMMU 设备绑定起来,也就是执行 SMMU 驱动中的系统 I/O 设备探测。总线发现系统 I/O 设备并和对应的驱动程序绑定,与 IOMMU 设备驱动程序注册并为 IOMMU 设备执行探测初始化的相对顺序不固定,可能系统 I/O 设备先被发现并和对应的驱动程序绑定,也可能 IOMMU 设备驱动程序注册及为 IOMMU 设备执行探测初始化先进行。

SMMU 驱动中的系统 I/O 设备探测有两个时机:

  1. 如果系统 I/O 设备发现并和对应的驱动程序绑定先执行,在为 IOMMU 设备执行探测初始化时,调用 bus_set_iommu() 函数为总线类型设置 IOMMU 回调,此时会遍历总线类型上已经发现的设备列表,并尝试执行 SMMU 驱动中的系统 I/O 设备探测及连接。

  2. 如果为 IOMMU 设备执行探测初始化先进行,则总线在发现及添加设备,并和对应的设备驱动程序绑定时,调用 of_dma_configure() 之类的函数尝试执行 SMMU 驱动中的系统 I/O 设备探测。

SMMUv3 设备驱动程序 probe 时执行系统 I/O 设备的 IOMMU 探测

SMMUv3 设备驱动程序 probe 时,通过如下这样的调用链:

bus_iommu_probe()

一路调到 bus_iommu_probe() 函数,bus_iommu_probe() 函数执行对总线类型上已经添加的系统 I/O 设备的探测。bus_iommu_probe() 函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

int bus_iommu_probe(struct bus_type *bus)
{
	struct iommu_group *group, *next;
	LIST_HEAD(group_list);
	int ret;

	/*
	 * This code-path does not allocate the default domain when
	 * creating the iommu group, so do it after the groups are
	 * created.
	 */
	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
	if (ret)
		return ret;

	list_for_each_entry_safe(group, next, &group_list, entry) {
		/* Remove item from the list */
		list_del_init(&group->entry);

		mutex_lock(&group->mutex);

		/* Try to allocate default domain */
		probe_alloc_default_domain(bus, group);

		if (!group->default_domain) {
			mutex_unlock(&group->mutex);
			continue;
		}

		iommu_group_create_direct_mappings(group);

		ret = __iommu_group_dma_attach(group);

		mutex_unlock(&group->mutex);

		if (ret)
			break;

		__iommu_group_dma_finalize(group);
	}

	return ret;
}

bus_iommu_probe() 函数主要做了这样一些事情:

  1. 遍历总线类型上的所有设备,针对每个设备执行 IOMMU 探测,获得或创建每个设备的 struct iommu_group,这些 struct iommu_group 放进一个链表中,由一个传出参数返回。各个设备的 IOMMU 探测主要由 probe_iommu_group() 函数完成。

  2. 遍历前 1 步中找到的所有 struct iommu_group,针对其中的每一个执行:

    • 将其从 struct iommu_group 链表中移除;
    • 为 IOMMU group 分配默认的 domain,这主要通过 probe_alloc_default_domain() 函数完成;
    • 为 IOMMU group 分配默认的 domain 失败,则检查下一个 struct iommu_group,否则继续执行;
    • 创建设备直接映射,这主要通过 iommu_group_create_direct_mappings() 函数完成;
    • 连接设备和 IOMMU domain,这主要通过 __iommu_group_dma_attach() 函数完成;
    • 完成系统 I/O 设备的 IOMMU 探测,这主要通过 __iommu_group_dma_finalize() 函数完成。

probe_iommu_group() 函数为每个系统 I/O 设备执行 IOMMU 探测,该函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

static struct dev_iommu *dev_iommu_get(struct device *dev)
{
	struct dev_iommu *param = dev->iommu;

	if (param)
		return param;

	param = kzalloc(sizeof(*param), GFP_KERNEL);
	if (!param)
		return NULL;

	mutex_init(&param->lock);
	dev->iommu = param;
	return param;
}

static void dev_iommu_free(struct device *dev)
{
	struct dev_iommu *param = dev->iommu;

	dev->iommu = NULL;
	if (param->fwspec) {
		fwnode_handle_put(param->fwspec->iommu_fwnode);
		kfree(param->fwspec);
	}
	kfree(param);
}

static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;
	struct iommu_device *iommu_dev;
	struct iommu_group *group;
	int ret;

	if (!ops)
		return -ENODEV;

	if (!dev_iommu_get(dev))
		return -ENOMEM;

	if (!try_module_get(ops->owner)) {
		ret = -EINVAL;
		goto err_free;
	}

	iommu_dev = ops->probe_device(dev);
	if (IS_ERR(iommu_dev)) {
		ret = PTR_ERR(iommu_dev);
		goto out_module_put;
	}

	dev->iommu->iommu_dev = iommu_dev;

	group = iommu_group_get_for_dev(dev);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_release;
	}
	iommu_group_put(group);

	if (group_list && !group->default_domain && list_empty(&group->entry))
		list_add_tail(&group->entry, group_list);

	iommu_device_link(iommu_dev, dev);

	return 0;

out_release:
	ops->release_device(dev);

out_module_put:
	module_put(ops->owner);

err_free:
	dev_iommu_free(dev);

	return ret;
}
 . . . . . .
static bool iommu_is_attach_deferred(struct iommu_domain *domain,
				     struct device *dev)
{
	if (domain->ops->is_attach_deferred)
		return domain->ops->is_attach_deferred(domain, dev);

	return false;
}

/**
 * iommu_group_add_device - add a device to an iommu group
 * @group: the group into which to add the device (reference should be held)
 * @dev: the device
 *
 * This function is called by an iommu driver to add a device into a
 * group.  Adding a device increments the group reference count.
 */
int iommu_group_add_device(struct iommu_group *group, struct device *dev)
{
	int ret, i = 0;
	struct group_device *device;

	device = kzalloc(sizeof(*device), GFP_KERNEL);
	if (!device)
		return -ENOMEM;

	device->dev = dev;

	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
	if (ret)
		goto err_free_device;

	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
rename:
	if (!device->name) {
		ret = -ENOMEM;
		goto err_remove_link;
	}

	ret = sysfs_create_link_nowarn(group->devices_kobj,
				       &dev->kobj, device->name);
	if (ret) {
		if (ret == -EEXIST && i >= 0) {
			/*
			 * Account for the slim chance of collision
			 * and append an instance to the name.
			 */
			kfree(device->name);
			device->name = kasprintf(GFP_KERNEL, "%s.%d",
						 kobject_name(&dev->kobj), i++);
			goto rename;
		}
		goto err_free_name;
	}

	kobject_get(group->devices_kobj);

	dev->iommu_group = group;

	mutex_lock(&group->mutex);
	list_add_tail(&device->list, &group->devices);
	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
		ret = __iommu_attach_device(group->domain, dev);
	mutex_unlock(&group->mutex);
	if (ret)
		goto err_put_group;

	/* Notify any listeners about change to group. */
	blocking_notifier_call_chain(&group->notifier,
				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);

	trace_add_device_to_group(group->id, dev);

	dev_info(dev, "Adding to iommu group %d\n", group->id);

	return 0;

err_put_group:
	mutex_lock(&group->mutex);
	list_del(&device->list);
	mutex_unlock(&group->mutex);
	dev->iommu_group = NULL;
	kobject_put(group->devices_kobj);
	sysfs_remove_link(group->devices_kobj, device->name);
err_free_name:
	kfree(device->name);
err_remove_link:
	sysfs_remove_link(&dev->kobj, "iommu_group");
err_free_device:
	kfree(device);
	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(iommu_group_add_device);
 . . . . . .
struct iommu_group *iommu_group_get(struct device *dev)
{
	struct iommu_group *group = dev->iommu_group;

	if (group)
		kobject_get(group->devices_kobj);

	return group;
}
EXPORT_SYMBOL_GPL(iommu_group_get);

/**
 * iommu_group_ref_get - Increment reference on a group
 * @group: the group to use, must not be NULL
 *
 * This function is called by iommu drivers to take additional references on an
 * existing group.  Returns the given group for convenience.
 */
struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
{
	kobject_get(group->devices_kobj);
	return group;
}
EXPORT_SYMBOL_GPL(iommu_group_ref_get);

/**
 * iommu_group_put - Decrement group reference
 * @group: the group to use
 *
 * This function is called by iommu drivers and users to release the
 * iommu group.  Once the reference count is zero, the group is released.
 */
void iommu_group_put(struct iommu_group *group)
{
	if (group)
		kobject_put(group->devices_kobj);
}
EXPORT_SYMBOL_GPL(iommu_group_put);
 . . . . . .
static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;
	struct iommu_group *group;
	int ret;

	group = iommu_group_get(dev);
	if (group)
		return group;

	if (!ops)
		return ERR_PTR(-EINVAL);

	group = ops->device_group(dev);
	if (WARN_ON_ONCE(group == NULL))
		return ERR_PTR(-EINVAL);

	if (IS_ERR(group))
		return group;

	ret = iommu_group_add_device(group, dev);
	if (ret)
		goto out_put_group;

	return group;

out_put_group:
	iommu_group_put(group);

	return ERR_PTR(ret);
}
 . . . . . .
static int probe_iommu_group(struct device *dev, void *data)
{
	struct list_head *group_list = data;
	struct iommu_group *group;
	int ret;

	/* Device is probed already if in a group */
	group = iommu_group_get(dev);
	if (group) {
		iommu_group_put(group);
		return 0;
	}

	ret = __iommu_probe_device(dev, group_list);
	if (ret == -ENODEV)
		ret = 0;

	return ret;
}
 . . . . . .
static int __iommu_attach_device(struct iommu_domain *domain,
				 struct device *dev)
{
	int ret;

	if (unlikely(domain->ops->attach_dev == NULL))
		return -ENODEV;

	ret = domain->ops->attach_dev(domain, dev);
	if (!ret)
		trace_attach_device_to_domain(dev);
	return ret;
}

probe_iommu_group() 函数首先尝试从设备 (由 struct device 表示) 获得它的 IOMMU group,如果获得成功,就返回,否则调用 __iommu_probe_device() 函数为系统 I/O 设备执行 IOMMU 的探测。

__iommu_probe_device() 函数的主要执行过程如下:

  1. 通过 dev_iommu_get() 获得设备 (由 struct device 表示) 的 dev_iommu。前面我们提到,在 IOMMU 子系统中,struct dev_iommu 对象表示一个连接到 IOMMU 的系统 I/O 设备。在 dev_iommu_get() 函数中,首先尝试获得设备的 dev_iommu,如果失败,会为设备创建 struct dev_iommu 对象

  2. 调用 IOMMU 设备驱动程序的 probe_device() 回调,添加设备到 IOMMU 设备驱动程序处理。SMMUv3 设备驱动程序的 probe_device() 回调检查设备是否与 SMMUv3 设备驱动程序匹配。probe_device() 回调成功时,为系统 I/O 设备返回它连接的 IOMMU 设备 (由 struct iommu_device 表示),失败时返回退出。

  3. 调用 iommu_group_get_for_dev() 函数为设备查找或创建 IOMMU group。

    • 尝试从设备获得它的 IOMMU group,如果获得成功,就返回,否则继续执行。
    • 调用 IOMMU 设备驱动程序的 device_group() 回调为设备查找或创建 IOMMU group,不同系统 I/O 设备间共享及创建 IOMMU group 的规则,由 IOMMU 设备驱动程序确定。
    • 将设备添加进 IOMMU group 的设备列表中。如果 IOMMU group 的 domain 已经存在,且设备不需要延迟连接,则会调用 __iommu_attach_device() 函数连接系统 I/O 设备和 IOMMU 设备,并会通知监听者 IOMMU group 添加了设备。
  4. 将获得的 IOMMU group 添加进传入的 IOMMU group 链表中。只有 IOMMU group 是新创建的会执行这个动作。

  5. 创建系统 I/O 设备和 IOMMU 设备间的链接。指示设备由给定的 IOMMU 管理。在 sysfs 中,IOMMU 设备的 “devices” 目录中将创建一个到该设备的链接,并在被链接的设备下创建一个指向 IOMMU 设备的 “IOMMU” 链接。

probe_iommu_group() 函数的执行过程总结如下图:

probe_iommu_group()

probe_iommu_group()/__iommu_probe_device() 函数为设备创建了如下对象:

  • 表示一个连接到 IOMMU 的系统 I/O 设备的 struct dev_iommu 对象;
  • SMMUv3 设备驱动程序内部表示系统 I/O 设备的 struct arm_smmu_master 对象,在 SMMUv3 设备驱动程序的 probe_device() 回调中;
  • IOMMU group。

probe_alloc_default_domain() 函数为各个 IOMMU group 分配默认的 domain,该函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
				      int (*fn)(struct device *, void *))
{
	struct group_device *device;
	int ret = 0;

	list_for_each_entry(device, &group->devices, list) {
		ret = fn(device->dev, data);
		if (ret)
			break;
	}
	return ret;
}
 . . . . . .
static int iommu_group_alloc_default_domain(struct bus_type *bus,
					    struct iommu_group *group,
					    unsigned int type)
{
	struct iommu_domain *dom;

	dom = __iommu_domain_alloc(bus, type);
	if (!dom && type != IOMMU_DOMAIN_DMA) {
		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
		if (dom)
			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
				type, group->name);
	}

	if (!dom)
		return -ENOMEM;

	group->default_domain = dom;
	if (!group->domain)
		group->domain = dom;

	if (!iommu_dma_strict) {
		int attr = 1;
		iommu_domain_set_attr(dom,
				      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
				      &attr);
	}

	return 0;
}
 . . . . . .
static int probe_get_default_domain_type(struct device *dev, void *data)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;
	struct __group_domain_type *gtype = data;
	unsigned int type = 0;

	if (ops->def_domain_type)
		type = ops->def_domain_type(dev);

	if (type) {
		if (gtype->type && gtype->type != type) {
			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
				 iommu_domain_type_str(type),
				 dev_name(gtype->dev),
				 iommu_domain_type_str(gtype->type));
			gtype->type = 0;
		}

		if (!gtype->dev) {
			gtype->dev  = dev;
			gtype->type = type;
		}
	}

	return 0;
}

static void probe_alloc_default_domain(struct bus_type *bus,
				       struct iommu_group *group)
{
	struct __group_domain_type gtype;

	memset(&gtype, 0, sizeof(gtype));

	/* Ask for default domain requirements of all devices in the group */
	__iommu_group_for_each_dev(group, &gtype,
				   probe_get_default_domain_type);

	if (!gtype.type)
		gtype.type = iommu_def_domain_type;

	iommu_group_alloc_default_domain(bus, group, gtype.type);

}
 . . . . . .
static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
						 unsigned type)
{
	struct iommu_domain *domain;

	if (bus == NULL || bus->iommu_ops == NULL)
		return NULL;

	domain = bus->iommu_ops->domain_alloc(type);
	if (!domain)
		return NULL;

	domain->ops  = bus->iommu_ops;
	domain->type = type;
	/* Assume all sizes by default; the driver may override this later */
	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
	mutex_init(&domain->switch_log_lock);

	return domain;
}

probe_alloc_default_domain() 函数:

  1. 遍历 IOMMU group 中的所有系统 I/O 设备,通过 IOMMU 设备驱动程序的 def_domain_type() 回调为系统 I/O 设备获得默认的 domain 类型,这分为几种情况来处理:

    • IOMMU 设备驱动程序不支持为系统 I/O 设备获得默认 domain 类型的操作,或者通过 IOMMU 设备驱动程序为所有系统 I/O 设备获得的默认 domain 类型都为 0,则采用定义的全局默认 domain 类型;
    • IOMMU 设备驱动程序为部分系统 I/O 设备定义了默认 domain 类型,且所有这些系统 I/O 设备的默认 domain 类型相同,则采用这个默认的 domain 类型;
    • IOMMU 设备驱动程序为部分系统 I/O 设备定义了默认 domain 类型,但所有这些系统 I/O 设备的默认 domain 类型不完全相同,则采用定义的全局默认 domain 类型。
  2. 根据获得的默认 domain 类型,通过 IOMMU 设备驱动程序的 domain_alloc() 回调为 IOMMU group 分配默认的 domain。如果分配传入的 domain 类型的 domain 失败,还会尝试分配 IOMMU_DOMAIN_DMA domain 类型的 domain。

iommu_group_create_direct_mappings() 函数为各个 IOMMU group 中的各个系统 I/O 设备创建直接映射,该函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

static int iommu_create_device_direct_mappings(struct iommu_group *group,
					       struct device *dev)
{
	struct iommu_domain *domain = group->default_domain;
	struct iommu_resv_region *entry;
	struct list_head mappings;
	unsigned long pg_size;
	int ret = 0;

	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
		return 0;

	BUG_ON(!domain->pgsize_bitmap);

	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
	INIT_LIST_HEAD(&mappings);

	iommu_get_resv_regions(dev, &mappings);

	/* We need to consider overlapping regions for different devices */
	list_for_each_entry(entry, &mappings, list) {
		dma_addr_t start, end, addr;

		if (domain->ops->apply_resv_region)
			domain->ops->apply_resv_region(dev, domain, entry);

		start = ALIGN(entry->start, pg_size);
		end   = ALIGN(entry->start + entry->length, pg_size);

		if (entry->type != IOMMU_RESV_DIRECT &&
		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
			continue;

		for (addr = start; addr < end; addr += pg_size) {
			phys_addr_t phys_addr;

			phys_addr = iommu_iova_to_phys(domain, addr);
			if (phys_addr)
				continue;

			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
			if (ret)
				goto out;
		}

	}

	iommu_flush_iotlb_all(domain);

out:
	iommu_put_resv_regions(dev, &mappings);

	return ret;
}
 . . . . . .
static int iommu_do_create_direct_mappings(struct device *dev, void *data)
{
	struct iommu_group *group = data;

	iommu_create_device_direct_mappings(group, dev);

	return 0;
}

static int iommu_group_create_direct_mappings(struct iommu_group *group)
{
	return __iommu_group_for_each_dev(group, group,
					  iommu_do_create_direct_mappings);
}
 . . . . . .
phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
	if (unlikely(domain->ops->iova_to_phys == NULL))
		return 0;

	return domain->ops->iova_to_phys(domain, iova);
}
EXPORT_SYMBOL_GPL(iommu_iova_to_phys);

size_t iommu_pgsize(struct iommu_domain *domain,
		    unsigned long addr_merge, size_t size)
{
	unsigned int pgsize_idx;
	size_t pgsize;

	/* Max page size that still fits into 'size' */
	pgsize_idx = __fls(size);

	/* need to consider alignment requirements ? */
	if (likely(addr_merge)) {
		/* Max page size allowed by address */
		unsigned int align_pgsize_idx = __ffs(addr_merge);
		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
	}

	/* build a mask of acceptable page sizes */
	pgsize = (1UL << (pgsize_idx + 1)) - 1;

	/* throw away page sizes not supported by the hardware */
	pgsize &= domain->pgsize_bitmap;

	/* make sure we're still sane */
	BUG_ON(!pgsize);

	/* pick the biggest page */
	pgsize_idx = __fls(pgsize);
	pgsize = 1UL << pgsize_idx;

	return pgsize;
}
EXPORT_SYMBOL_GPL(iommu_pgsize);

static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
{
	const struct iommu_ops *ops = domain->ops;
	unsigned long orig_iova = iova;
	unsigned int min_pagesz;
	size_t orig_size = size;
	phys_addr_t orig_paddr = paddr;
	int ret = 0;

	if (unlikely(ops->map == NULL ||
		     domain->pgsize_bitmap == 0UL))
		return -ENODEV;

	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
		return -EINVAL;

	/* find out the minimum page size supported */
	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);

	/*
	 * both the virtual address and the physical one, as well as
	 * the size of the mapping, must be aligned (at least) to the
	 * size of the smallest page supported by the hardware
	 */
	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
		       iova, &paddr, size, min_pagesz);
		return -EINVAL;
	}

	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);

	while (size) {
		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);

		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
			 iova, &paddr, pgsize);
		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);

		if (ret)
			break;

		iova += pgsize;
		paddr += pgsize;
		size -= pgsize;
	}

	/* unroll mapping in case something went wrong */
	if (ret)
		iommu_unmap(domain, orig_iova, orig_size - size);
	else
		trace_map(orig_iova, orig_paddr, orig_size);

	return ret;
}

static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
{
	const struct iommu_ops *ops = domain->ops;
	int ret;

	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
	if (ret == 0 && ops->iotlb_sync_map)
		ops->iotlb_sync_map(domain, iova, size);

	return ret;
}

int iommu_map(struct iommu_domain *domain, unsigned long iova,
	      phys_addr_t paddr, size_t size, int prot)
{
	might_sleep();
	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(iommu_map);
 . . . . . .
void iommu_get_resv_regions(struct device *dev, struct list_head *list)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;

	if (ops && ops->get_resv_regions)
		ops->get_resv_regions(dev, list);
}

void iommu_put_resv_regions(struct device *dev, struct list_head *list)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;

	if (ops && ops->put_resv_regions)
		ops->put_resv_regions(dev, list);
}

iommu_group_create_direct_mappings() 函数遍历 IOMMU group 中的各个系统 I/O 设备,通过 iommu_do_create_direct_mappings()/iommu_create_device_direct_mappings()函数为每个设备创建设备的直接映射,直接映射针对设备的保留内存区域,且 domain type 为 DMA。

iommu_create_device_direct_mappings() 的执行过程如下:

  1. 通过 IOMMU 设备驱动程序的 get_resv_regions() 回调获得设备的所有保留内存映射区域,没开启 IOMMU 时,保留内存映射区域的地址是物理内存地址,开启 IOMMU 时,保留内存映射区域的地址是 IO 虚拟地址。
  2. 针对设备的每个保留内存映射区域:
    • 通过 IOMMU 设备驱动程序的 apply_resv_region() 回调,应用保留内存映射区域;
    • 将内存映射区域的起始地址对齐到页大小;
    • 针对内存映射区域内的每个内存页:
      • 通过 IOMMU 设备驱动程序的 iova_to_phys() 回调获得内存页的物理地址,用于判断是否可以映射;
      • 通过 iommu_map()/_iommu_map() 函数映射一个内存页。
  3. 通过 IOMMU 设备驱动程序的 flush_iotlb_all() 回调刷新 domain 的 IO TLB。
  4. 通过 IOMMU 设备驱动程序的 put_resv_regions() 回调释放获得的设备的所有保留内存映射区域。

iommu_create_device_direct_mappings() 函数的执行过程总结如下图:

iommu_create_device_direct_mappings()

__iommu_group_dma_attach() 函数为各个 IOMMU group 中的各个系统 I/O 设备建立与 IOMMU 设备的连接,这个函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

static int iommu_group_do_dma_attach(struct device *dev, void *data)
{
	struct iommu_domain *domain = data;
	int ret = 0;

	if (!iommu_is_attach_deferred(domain, dev))
		ret = __iommu_attach_device(domain, dev);

	return ret;
}

static int __iommu_group_dma_attach(struct iommu_group *group)
{
	return __iommu_group_for_each_dev(group, group->default_domain,
					  iommu_group_do_dma_attach);
}

__iommu_group_dma_attach() 函数遍历 IOMMU group 中的各个系统 I/O 设备,通过 IOMMU 设备驱动程序的 is_attach_deferred() 回调判断系统 I/O 设备是否需要延迟连接,如果不需要,则会调用 __iommu_attach_device() 函数,通过 IOMMU 设备驱动程序的 attach_dev() 回调连接系统 I/O 设备和 IOMMU 设备。由于前面的步骤,此时可以确保 IOMMU group 的 domain 是存在的,因而不需要像前面在将设备添加到 IOMMU group 中那样检查 domain。

__iommu_group_dma_finalize() 函数为各个 IOMMU group 中的各个系统 I/O 设备结束 IOMMU 探测,这个函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

static int iommu_group_do_probe_finalize(struct device *dev, void *data)
{
	struct iommu_domain *domain = data;

	if (domain->ops->probe_finalize)
		domain->ops->probe_finalize(dev);

	return 0;
}

static void __iommu_group_dma_finalize(struct iommu_group *group)
{
	__iommu_group_for_each_dev(group, group->default_domain,
				   iommu_group_do_probe_finalize);
}

__iommu_group_dma_finalize() 函数遍历 IOMMU group 中的各个系统 I/O 设备,通过 IOMMU 设备驱动程序的 probe_finalize() 回调为系统 I/O 设备结束 IOMMU 探测。

SMMUv3 设备驱动程序 probe 时执行系统 I/O 设备的 IOMMU 探测的整体过程大概如下图所示:

设备的 IOMMU 探测

系统 I/O 设备和其对应的驱动程序绑定时执行系统 I/O 设备的 IOMMU 探测

系统 I/O 设备和其对应的驱动程序绑定时执行系统 I/O 设备的 IOMMU 探测,入口是 of_dma_configure()/of_dma_configure_id() 函数,它们用于建立 DMA 配置。of_dma_configure() 函数定义 (位于 include/linux/of_device.h 文件中) 如下:

int of_dma_configure_id(struct device *dev,
		     struct device_node *np,
		     bool force_dma, const u32 *id);
static inline int of_dma_configure(struct device *dev,
				   struct device_node *np,
				   bool force_dma)
{
	return of_dma_configure_id(dev, np, force_dma, NULL);
}

系统 I/O 设备的 IOMMU 探测的调用链大概像下面这样:

[   19.147047]  iommu_probe_device+0x28/0x1c0
[   19.152700]  of_iommu_configure+0xd8/0x1e0
[   19.158358]  of_dma_configure_id+0x1c8/0x2a4
[   19.164266]  platform_dma_configure+0x20/0x90
[   19.170186]  really_probe+0xa0/0x4c0
[   19.175083]  driver_probe_device+0x58/0xc0
[   19.180657]  device_driver_attach+0xc0/0xd0
[   19.186342]  __driver_attach+0x84/0x124
[   19.191559]  bus_for_each_dev+0x70/0xd0
[   19.196795]  driver_attach+0x24/0x30
[   19.201686]  bus_add_driver+0x108/0x1fc
[   19.206928]  driver_register+0x78/0x130
[   19.212189]  __platform_driver_register+0x4c/0x60

of_dma_configure_id() 函数定义 (位于 drivers/of/device.c 文件中) 如下:

int of_dma_configure_id(struct device *dev, struct device_node *np,
			bool force_dma, const u32 *id)
{
	const struct iommu_ops *iommu;
	const struct bus_dma_region *map = NULL;
	u64 dma_start = 0;
	u64 mask, end, size = 0;
	bool coherent;
	int ret;

	ret = of_dma_get_range(np, &map);
	if (ret < 0) {
		/*
		 * For legacy reasons, we have to assume some devices need
		 * DMA configuration regardless of whether "dma-ranges" is
		 * correctly specified or not.
		 */
		if (!force_dma)
			return ret == -ENODEV ? 0 : ret;
	} else {
		const struct bus_dma_region *r = map;
		u64 dma_end = 0;

		/* Determine the overall bounds of all DMA regions */
		for (dma_start = ~0; r->size; r++) {
			/* Take lower and upper limits */
			if (r->dma_start < dma_start)
				dma_start = r->dma_start;
			if (r->dma_start + r->size > dma_end)
				dma_end = r->dma_start + r->size;
		}
		size = dma_end - dma_start;

		/*
		 * Add a work around to treat the size as mask + 1 in case
		 * it is defined in DT as a mask.
		 */
		if (size & 1) {
			dev_warn(dev, "Invalid size 0x%llx for dma-range(s)\n",
				 size);
			size = size + 1;
		}

		if (!size) {
			dev_err(dev, "Adjusted size 0x%llx invalid\n", size);
			kfree(map);
			return -EINVAL;
		}
	}

	/*
	 * If @dev is expected to be DMA-capable then the bus code that created
	 * it should have initialised its dma_mask pointer by this point. For
	 * now, we'll continue the legacy behaviour of coercing it to the
	 * coherent mask if not, but we'll no longer do so quietly.
	 */
	if (!dev->dma_mask) {
		dev_warn(dev, "DMA mask not set\n");
		dev->dma_mask = &dev->coherent_dma_mask;
	}

	if (!size && dev->coherent_dma_mask)
		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
	else if (!size)
		size = 1ULL << 32;

	/*
	 * Limit coherent and dma mask based on size and default mask
	 * set by the driver.
	 */
	end = dma_start + size - 1;
	mask = DMA_BIT_MASK(ilog2(end) + 1);
	dev->coherent_dma_mask &= mask;
	*dev->dma_mask &= mask;
	/* ...but only set bus limit and range map if we found valid dma-ranges earlier */
	if (!ret) {
		dev->bus_dma_limit = end;
		dev->dma_range_map = map;
	}

	coherent = of_dma_is_coherent(np);
	dev_dbg(dev, "device is%sdma coherent\n",
		coherent ? " " : " not ");

	iommu = of_iommu_configure(dev, np, id);
	if (PTR_ERR(iommu) == -EPROBE_DEFER) {
		/* Don't touch range map if it wasn't set from a valid dma-ranges */
		if (!ret)
			dev->dma_range_map = NULL;
		kfree(map);
		return -EPROBE_DEFER;
	}

	dev_dbg(dev, "device is%sbehind an iommu\n",
		iommu ? " " : " not ");

	arch_setup_dma_ops(dev, dma_start, size, iommu, coherent);

	return 0;
}
EXPORT_SYMBOL_GPL(of_dma_configure_id);

of_dma_configure_id() 函数做了如下几件事情:

  1. 调用 of_dma_get_range() 函数获得设备的 DMA 范围信息,并把它们放进一个 map 数组中。设备的 DMA 范围信息在设备树文件中,由设备节点的 "dma-ranges" 属性定义,像下面 (位于 arch/arm64/boot/dts/apm/apm-storm.dtsi 文件中) 这样:
		pcie0: pcie@1f2b0000 {
 . . . . . .
			dma-ranges = <0x42000000 0x80 0x00000000 0x80 0x00000000 0x00 0x80000000
				      0x42000000 0x00 0x00000000 0x00 0x00000000 0x80 0x00000000>;
 . . . . . .
		};

of_dma_get_range() 函数定义 (位于 drivers/of/address.c 文件中) 如下:

#ifdef CONFIG_HAS_DMA
/**
 * of_dma_get_range - Get DMA range info and put it into a map array
 * @np:		device node to get DMA range info
 * @map:	dma range structure to return
 *
 * Look in bottom up direction for the first "dma-ranges" property
 * and parse it.  Put the information into a DMA offset map array.
 *
 * dma-ranges format:
 *	DMA addr (dma_addr)	: naddr cells
 *	CPU addr (phys_addr_t)	: pna cells
 *	size			: nsize cells
 *
 * It returns -ENODEV if "dma-ranges" property was not found for this
 * device in the DT.
 */
int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
{
	struct device_node *node = of_node_get(np);
	const __be32 *ranges = NULL;
	bool found_dma_ranges = false;
	struct of_range_parser parser;
	struct of_range range;
	struct bus_dma_region *r;
	int len, num_ranges = 0;
	int ret = 0;

	while (node) {
		ranges = of_get_property(node, "dma-ranges", &len);

		/* Ignore empty ranges, they imply no translation required */
		if (ranges && len > 0)
			break;

		/* Once we find 'dma-ranges', then a missing one is an error */
		if (found_dma_ranges && !ranges) {
			ret = -ENODEV;
			goto out;
		}
		found_dma_ranges = true;

		node = of_get_next_dma_parent(node);
	}

	if (!node || !ranges) {
		pr_debug("no dma-ranges found for node(%pOF)\n", np);
		ret = -ENODEV;
		goto out;
	}

	of_dma_range_parser_init(&parser, node);
	for_each_of_range(&parser, &range)
		num_ranges++;

	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
	if (!r) {
		ret = -ENOMEM;
		goto out;
	}

	/*
	 * Record all info in the generic DMA ranges array for struct device.
	 */
	*map = r;
	of_dma_range_parser_init(&parser, node);
	for_each_of_range(&parser, &range) {
		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
			 range.bus_addr, range.cpu_addr, range.size);
		if (range.cpu_addr == OF_BAD_ADDR) {
			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
			       range.bus_addr, node);
			continue;
		}
		r->cpu_start = range.cpu_addr;
		r->dma_start = range.bus_addr;
		r->size = range.size;
		r->offset = range.cpu_addr - range.bus_addr;
		r++;
	}
out:
	of_node_put(node);
	return ret;
}
#endif /* CONFIG_HAS_DMA */
  1. 计算所有 DMA 区域整体的边界和大小。
  2. 初始化设备的 dma_mask,及总线 DMA 限制。
  3. 调用 of_iommu_configure() 函数为设备执行 IOMMU 配置。
  4. 调用 arch_setup_dma_ops() 函数为设备设置 DMA 操作回调。

of_iommu_configure() 函数定义 (位于 drivers/iommu/of_iommu.c 文件中) 如下:

static int of_iommu_xlate(struct device *dev,
			  struct of_phandle_args *iommu_spec)
{
	const struct iommu_ops *ops;
	struct fwnode_handle *fwnode = &iommu_spec->np->fwnode;
	int ret;

	ops = iommu_ops_from_fwnode(fwnode);
	if ((ops && !ops->of_xlate) ||
	    !of_device_is_available(iommu_spec->np))
		return NO_IOMMU;

	ret = iommu_fwspec_init(dev, &iommu_spec->np->fwnode, ops);
	if (ret)
		return ret;
	/*
	 * The otherwise-empty fwspec handily serves to indicate the specific
	 * IOMMU device we're waiting for, which will be useful if we ever get
	 * a proper probe-ordering dependency mechanism in future.
	 */
	if (!ops)
		return driver_deferred_probe_check_state(dev);

	if (!try_module_get(ops->owner))
		return -ENODEV;

	ret = ops->of_xlate(dev, iommu_spec);
	module_put(ops->owner);
	return ret;
}

static int of_iommu_configure_dev_id(struct device_node *master_np,
				     struct device *dev,
				     const u32 *id)
{
	struct of_phandle_args iommu_spec = { .args_count = 1 };
	int err;

	err = of_map_id(master_np, *id, "iommu-map",
			 "iommu-map-mask", &iommu_spec.np,
			 iommu_spec.args);
	if (err)
		return err == -ENODEV ? NO_IOMMU : err;

	err = of_iommu_xlate(dev, &iommu_spec);
	of_node_put(iommu_spec.np);
	return err;
}

static int of_iommu_configure_dev(struct device_node *master_np,
				  struct device *dev)
{
	struct of_phandle_args iommu_spec;
	int err = NO_IOMMU, idx = 0;

	while (!of_parse_phandle_with_args(master_np, "iommus",
					   "#iommu-cells",
					   idx, &iommu_spec)) {
		err = of_iommu_xlate(dev, &iommu_spec);
		of_node_put(iommu_spec.np);
		idx++;
		if (err)
			break;
	}

	return err;
}
 . . . . . .
static int of_iommu_configure_device(struct device_node *master_np,
				     struct device *dev, const u32 *id)
{
	return (id) ? of_iommu_configure_dev_id(master_np, dev, id) :
		      of_iommu_configure_dev(master_np, dev);
}
 . . . . . .
const struct iommu_ops *of_iommu_configure(struct device *dev,
					   struct device_node *master_np,
					   const u32 *id)
{
	const struct iommu_ops *ops = NULL;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
	int err = NO_IOMMU;

	if (!master_np)
		return NULL;

	if (fwspec) {
		if (fwspec->ops)
			return fwspec->ops;

		/* In the deferred case, start again from scratch */
		iommu_fwspec_free(dev);
	}

	/*
	 * We don't currently walk up the tree looking for a parent IOMMU.
	 * See the `Notes:' section of
	 * Documentation/devicetree/bindings/iommu/iommu.txt
	 */
	if (dev_is_pci(dev)) {
		struct of_pci_iommu_alias_info info = {
			.dev = dev,
			.np = master_np,
		};

		pci_request_acs();
		err = pci_for_each_dma_alias(to_pci_dev(dev),
					     of_pci_iommu_init, &info);
		of_pci_check_device_ats(dev, master_np);

	} else {
		err = of_iommu_configure_device(master_np, dev, id);
	}

	/*
	 * Two success conditions can be represented by non-negative err here:
	 * >0 : there is no IOMMU, or one was unavailable for non-fatal reasons
	 *  0 : we found an IOMMU, and dev->fwspec is initialised appropriately
	 * <0 : any actual error
	 */
	if (!err) {
		/* The fwspec pointer changed, read it again */
		fwspec = dev_iommu_fwspec_get(dev);
		ops    = fwspec->ops;
	}
	/*
	 * If we have reason to believe the IOMMU driver missed the initial
	 * probe for dev, replay it to get things in order.
	 */
	if (!err && dev->bus && !device_iommu_mapped(dev))
		err = iommu_probe_device(dev);

	/* Ignore all other errors apart from EPROBE_DEFER */
	if (err == -EPROBE_DEFER) {
		ops = ERR_PTR(err);
	} else if (err < 0) {
		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
		ops = NULL;
	}

	return ops;
}

这里主要关注非 PCIe 设备的情况。struct iommu_fwspec 对象包含每设备的 IOMMU 实例数据。of_iommu_configure() 函数执行过程如下:

  1. 尝试从系统 I/O 设备获得它的 struct iommu_fwspec 对象。dev_iommu_fwspec_get(dev) 函数定义 (位于 include/linux/iommu.h 文件中) 如下:
static inline struct iommu_fwspec *dev_iommu_fwspec_get(struct device *dev)
{
	if (dev->iommu)
		return dev->iommu->fwspec;
	else
		return NULL;
}

static inline void dev_iommu_fwspec_set(struct device *dev,
					struct iommu_fwspec *fwspec)
{
	dev->iommu->fwspec = fwspec;
}

dev_iommu_fwspec_get(dev) 函数通过系统 I/O 设备的 struct dev_iommu *iommu 获得其 struct iommu_fwspec 对象,但系统 I/O 设备的 struct dev_iommu *iommu 在 IOMMU 配置设备时,或系统 I/O 设备的 IOMMU 探测时创建。如果这里成功获得了系统 I/O 设备的 struct iommu_fwspec 对象,且其 IOMMU 回调有效,则直接返回其 IOMMU 回调。为系统 I/O 设备调用 of_dma_configure_id() 函数时,已经对系统 I/O 设备执行过了 IOMMU 初始化时,会发生这种情况。如果这里成功获得了系统 I/O 设备的 struct iommu_fwspec 对象,但其 IOMMU 回调无效,struct iommu_fwspec 对象会被先释放掉。

  1. 通过 of_iommu_configure_device() 函数,从设备树的设备节点中获得它连接的 IOMMU 设备的句柄,并为系统 I/O 设备调用 of_iommu_xlate() 函数执行 iommu xlate 操作。of_iommu_xlate() 函数执行过程如下:
    • 在 IOMMU 子系统的所有 IOMMU 设备列表中查找与获得的 IOMMU 设备句柄匹配的 IOMMU 设备的 IOMMU 回调。这通过 iommu_ops_from_fwnode() 函数完成。
    • 调用 iommu_fwspec_init() 函数为设备创建 struct iommu_fwspec 对象。当系统 I/O 设备的 dev_iommu 不存在时,iommu_fwspec_init() 函数会创建它。
    • 通过找到的 IOMMU 设备的 IOMMU 设备驱动程序的 of_xlate() 回调,将 OF master ID 添加到 IOMMU 组。

iommu_ops_from_fwnode() 函数和 iommu_fwspec_init() 函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
{
	const struct iommu_ops *ops = NULL;
	struct iommu_device *iommu;

	spin_lock(&iommu_device_lock);
	list_for_each_entry(iommu, &iommu_device_list, list)
		if (iommu->fwnode == fwnode) {
			ops = iommu->ops;
			break;
		}
	spin_unlock(&iommu_device_lock);
	return ops;
}

int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
		      const struct iommu_ops *ops)
{
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);

	if (fwspec)
		return ops == fwspec->ops ? 0 : -EINVAL;

	if (!dev_iommu_get(dev))
		return -ENOMEM;

	/* Preallocate for the overwhelmingly common case of 1 ID */
	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
	if (!fwspec)
		return -ENOMEM;

	of_node_get(to_of_node(iommu_fwnode));
	fwspec->iommu_fwnode = iommu_fwnode;
	fwspec->ops = ops;
	dev_iommu_fwspec_set(dev, fwspec);
	return 0;
}
EXPORT_SYMBOL_GPL(iommu_fwspec_init);
  1. 通过 iommu_probe_device() 函数执行系统 I/O 设备的 IOMMU 探测。

iommu_probe_device() 函数与 bus_iommu_probe() 函数做的事情类似,差别在于前者针对单个系统 I/O 设备,后者则针对总线类型上存在的许多系统 I/O 设备。iommu_probe_device() 函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

int iommu_probe_device(struct device *dev)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;
	struct iommu_group *group;
	int ret;

	ret = __iommu_probe_device(dev, NULL);
	if (ret)
		goto err_out;

	group = iommu_group_get(dev);
	if (!group)
		goto err_release;

	/*
	 * Try to allocate a default domain - needs support from the
	 * IOMMU driver. There are still some drivers which don't
	 * support default domains, so the return value is not yet
	 * checked.
	 */
	iommu_alloc_default_domain(group, dev);

	if (group->default_domain) {
		ret = __iommu_attach_device(group->default_domain, dev);
		if (ret) {
			iommu_group_put(group);
			goto err_release;
		}
	}

	iommu_create_device_direct_mappings(group, dev);

	iommu_group_put(group);

	if (ops->probe_finalize)
		ops->probe_finalize(dev);

	return 0;

err_release:
	iommu_release_device(dev);

err_out:
	return ret;

}
 . . . . . .
static int iommu_get_def_domain_type(struct device *dev)
{
	const struct iommu_ops *ops = dev->bus->iommu_ops;
	unsigned int type = 0;

	if (ops->def_domain_type)
		type = ops->def_domain_type(dev);

	return (type == 0) ? iommu_def_domain_type : type;
}
 . . . . . .
static int iommu_alloc_default_domain(struct iommu_group *group,
				      struct device *dev)
{
	unsigned int type;

	if (group->default_domain)
		return 0;

	type = iommu_get_def_domain_type(dev);

	return iommu_group_alloc_default_domain(dev->bus, group, type);
}

iommu_probe_device() 函数主要做了这样一些事情:

  1. 通过 __iommu_probe_device() 函数为系统 I/O 设备执行 IOMMU 探测,获得或创建设备的 struct iommu_group

  2. 为 IOMMU group 分配默认的 domain,这主要通过 iommu_alloc_default_domain() 函数完成。iommu_alloc_default_domain() 函数首先通过 iommu_get_def_domain_type() 函数获得系统 I/O 设备默认的 domain 的类型,然后通过 iommu_group_alloc_default_domain() 函数分配默认的 domain。

  3. 连接系统 I/O 设备和 IOMMU domain,这主要通过 __iommu_attach_device() 函数完成。

  4. 创建设备直接映射,这主要通过 iommu_create_device_direct_mappings() 函数完成。

  5. 完成系统 I/O 设备的 IOMMU 探测,这主要通过 IOMMU 设备驱动程序提供的 probe_finalize() 回调完成。

iommu_probe_device() 函数整体的执行过程大概如下图所示:

iommu_probe_device

of_dma_configure()/of_dma_configure_id() 函数整体的执行过程 (iommu_probe_device() 函数的部分调用关系简略表示) 大概如下图所示:

of_dma_configure

SMMUv3 设备驱动程序中的系统 I/O 设备探测

如上所述,系统 I/O 设备的 IOMMU 探测过程中,有多个 SMMUv3 设备驱动程序提供的 IOMMU 回调,出于不同的目的被调用。系统 I/O 设备的 IOMMU 探测过程可以分为几个阶段,每个阶段会有不同的 SMMUv3 设备驱动程序 IOMMU 回调被调用:

  1. OF IOMMU 配置设备,struct iommu_fwspec 对象创建及初始化:

    • of_xlate()/arm_smmu_of_xlate()
  2. IOMMU 探测设备:

    • probe_device()/arm_smmu_probe_device()
    • device_group()/arm_smmu_device_group()
  3. 分配默认的 domain:

    • def_domain_type()/arm_smmu_device_domain_type()
    • domain_alloc()/arm_smmu_domain_alloc()
  4. 连接系统 I/O 设备和 SMMUv3 设备:

    • attach_dev()/arm_smmu_attach_dev()
  5. 创建设备直接区域映射:

    • get_resv_regions()/arm_smmu_get_resv_regions()
    • apply_resv_region()/*,SMMUv3 设备驱动程序未实现
    • iova_to_phys()/arm_smmu_iova_to_phys()
    • map()/arm_smmu_map()
    • iotlb_sync_map()/*,SMMUv3 设备驱动程序未实现
    • flush_iotlb_all()/arm_smmu_flush_iotlb_all()
    • put_resv_regions()/generic_iommu_put_resv_regions()
  6. 结束系统 I/O 设备的 IOMMU 探测:

    • probe_finalize()/*,SMMUv3 设备驱动程序未实现

SMMUv3 设备驱动程序定义的所有 IOMMU 回调都位于 drivers/iommu/arm/arm-smmu-v3/arm-smmu-v3.c 文件中。

SMMUv3 设备驱动程序的 of_xlate() 回调 arm_smmu_of_xlate() 将从设备树文件中解析获得的系统 I/O 设备的 StreamID 添加进它的 struct iommu_fwspec 对象,这个函数定义如下:

static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

arm_smmu_of_xlate() 函数调用 iommu_fwspec_add_ids() 函数添加 1 个 StreamID。iommu_fwspec_add_ids() 函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
{
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
	int i, new_num;

	if (!fwspec)
		return -EINVAL;

	new_num = fwspec->num_ids + num_ids;
	if (new_num > 1) {
		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
				  GFP_KERNEL);
		if (!fwspec)
			return -ENOMEM;

		dev_iommu_fwspec_set(dev, fwspec);
	}

	for (i = 0; i < num_ids; i++)
		fwspec->ids[fwspec->num_ids + i] = ids[i];

	fwspec->num_ids = new_num;
	return 0;
}
EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);

iommu_fwspec_add_ids() 函数确保 struct iommu_fwspec 对象中有足够的空间来存放要添加的 StreamID,如果空间不足,会先重新分配并初始化 struct iommu_fwspec 对象,之后将要添加的 StreamID 放进 struct iommu_fwspec 对象。

在 IOMMU 探测设备阶段,SMMUv3 设备驱动程序的 probe_device() 回调 arm_smmu_probe_device() 执行系统 I/O 设备的 IOMMU 探测。这个函数定义如下::

static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;

	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
}
 . . . . . .
static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];

	desc->span = STRTAB_SPLIT + 1;
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL);
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}
 . . . . . .
static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

static int arm_smmu_insert_master(struct arm_smmu_device *smmu,
				  struct arm_smmu_master *master)
{
	int i;
	int ret = 0;
	struct arm_smmu_stream *new_stream, *cur_stream;
	struct rb_node **new_node, *parent_node = NULL;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams),
				  GFP_KERNEL);
	if (!master->streams)
		return -ENOMEM;
	master->num_streams = fwspec->num_ids;

	mutex_lock(&smmu->streams_mutex);
	for (i = 0; i < fwspec->num_ids; i++) {
		u32 sid = fwspec->ids[i];

		new_stream = &master->streams[i];
		new_stream->id = sid;
		new_stream->master = master;

		/*
		 * Check the SIDs are in range of the SMMU and our stream table
		 */
		if (!arm_smmu_sid_in_range(smmu, sid)) {
			ret = -ERANGE;
			break;
		}

		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				break;
		}

		/* Insert into SID tree */
		new_node = &(smmu->streams.rb_node);
		while (*new_node) {
			cur_stream = rb_entry(*new_node, struct arm_smmu_stream,
					      node);
			parent_node = *new_node;
			if (cur_stream->id > new_stream->id) {
				new_node = &((*new_node)->rb_left);
			} else if (cur_stream->id < new_stream->id) {
				new_node = &((*new_node)->rb_right);
			} else {
				dev_warn(master->dev,
					 "stream %u already in tree\n",
					 cur_stream->id);
				ret = -EINVAL;
				break;
			}
		}
		if (ret)
			break;

		rb_link_node(&new_stream->node, parent_node, new_node);
		rb_insert_color(&new_stream->node, &smmu->streams);
	}

	if (ret) {
		for (i--; i >= 0; i--)
			rb_erase(&master->streams[i].node, &smmu->streams);
		kfree(master->streams);
	}
	mutex_unlock(&smmu->streams_mutex);

	return ret;
}
 . . . . . .
static struct iommu_ops arm_smmu_ops;

static struct iommu_device *arm_smmu_probe_device(struct device *dev)
{
	int ret;
	struct arm_smmu_device *smmu;
	struct arm_smmu_master *master;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return ERR_PTR(-ENODEV);

	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
		return ERR_PTR(-EBUSY);

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
		return ERR_PTR(-ENODEV);

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
		return ERR_PTR(-ENOMEM);

	master->dev = dev;
	master->smmu = smmu;
	INIT_LIST_HEAD(&master->bonds);
	dev_iommu_priv_set(dev, master);

	ret = arm_smmu_insert_master(smmu, master);
	if (ret)
		goto err_free_master;

	device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits);
	master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits);

	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

	if ((smmu->features & ARM_SMMU_FEAT_STALLS &&
	     device_property_read_bool(dev, "dma-can-stall")) ||
	    smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		master->stall_enabled = true;

	arm_smmu_init_pri(master);

	return &smmu->iommu;

err_free_master:
	kfree(master);
	dev_iommu_priv_set(dev, NULL);
	return ERR_PTR(ret);
}

probe_device() 回调大概做了这样一些事情:

  1. 创建并初始化 struct arm_smmu_master 对象。struct arm_smmu_master 在 SMMUv3 设备驱动程序中表示一个连接到 SMMUv3 设备的系统 I/O 设备。struct arm_smmu_master 对象通过系统 I/O 设备的 dev_iommu 的 priv 字段和它连接在一起,这从 dev_iommu_priv_get()/dev_iommu_priv_set() 函数的定义 (位于 include/linux/iommu.h 文件中) 可以看出来:
static inline void *dev_iommu_priv_get(struct device *dev)
{
	if (dev->iommu)
		return dev->iommu->priv;
	else
		return NULL;
}

static inline void dev_iommu_priv_set(struct device *dev, void *priv)
{
	dev->iommu->priv = priv;
}
  1. 调用 arm_smmu_insert_master() 函数为系统 I/O 设备创建流,并把这些流 SID 插入 SMMUv3 设备的 SID 树中:

    • 为流分配内存。要创建的流的数量根据系统 I/O 设备的 StreamID 的数量确定,对于大多数一般的系统 I/O 设备为 1。
    • 对于每个流:
      • 初始化流的 ID;
      • 检查流的 ID 是否在设置的 StreamID 的范围内,如果不在则检查下一个流,否则继续执行;
      • 如果使用了 2 级流表,在 arm_smmu_init_l2_strtab() 函数中分配并填充第 2 级流表。arm_smmu_init_l2_strtab() 函数调用 arm_smmu_init_bypass_stes() 函数将第 2 级流表中的所有流表项 STE 初始化为旁路 SMMU,并调用 arm_smmu_write_strtab_l1_desc() 函数将第 2 级流表的地址写入第 1 级流表中,对应的 L1 流表描述符中;
      • 将 StreamID 插入 SMMUv3 设备的 SID 树中;
    • 如果针对某个流的某个操作执行失败,则移除已经为当前系统 I/O 设备添加的所有 StreamID。
  2. 从设备树文件中读取系统 I/O 设备的 SubstreamID 位长,并计算将采用的 SubstreamID 位长。

  3. 启用 PASID。仅用于 PCIe 设备。

  4. 不支持 2 级 CD 表时,更新 SubstreamID 位长。

  5. 检查是否要为系统 I/O 设备支持 Stall 模式。

  6. 初始化 PRI。仅用于 PCIe 设备。

在 IOMMU 探测设备阶段,SMMUv3 设备驱动程序的 device_group() 回调 arm_smmu_device_group() 用于为系统 I/O 设备查找或创建 IOMMU group,这个函数定义如下:

static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

arm_smmu_device_group() 函数分为 PCIe 设备和其它设备来执行。IOMMU 子系统不支持设备共享 stream ID,除了 PCI RID 别名。这里主要关注非 PCIe 设备。generic_device_group() 函数为非 PCIe 设备分配 IOMMU group,这个函数定义 (位于 drivers/iommu/iommu.c 文件中) 如下:

struct iommu_group *iommu_group_alloc(void)
{
	struct iommu_group *group;
	int ret;

	group = kzalloc(sizeof(*group), GFP_KERNEL);
	if (!group)
		return ERR_PTR(-ENOMEM);

	group->kobj.kset = iommu_group_kset;
	mutex_init(&group->mutex);
	INIT_LIST_HEAD(&group->devices);
	INIT_LIST_HEAD(&group->entry);
	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);

	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
	if (ret < 0) {
		kfree(group);
		return ERR_PTR(ret);
	}
	group->id = ret;

	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
				   NULL, "%d", group->id);
	if (ret) {
		ida_simple_remove(&iommu_group_ida, group->id);
		kobject_put(&group->kobj);
		return ERR_PTR(ret);
	}

	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
	if (!group->devices_kobj) {
		kobject_put(&group->kobj); /* triggers .release & free */
		return ERR_PTR(-ENOMEM);
	}

	/*
	 * The devices_kobj holds a reference on the group kobject, so
	 * as long as that exists so will the group.  We can therefore
	 * use the devices_kobj for reference counting.
	 */
	kobject_put(&group->kobj);

	ret = iommu_group_create_file(group,
				      &iommu_group_attr_reserved_regions);
	if (ret)
		return ERR_PTR(ret);

	ret = iommu_group_create_file(group, &iommu_group_attr_type);
	if (ret)
		return ERR_PTR(ret);

	pr_debug("Allocated group %d\n", group->id);

	return group;
}
EXPORT_SYMBOL_GPL(iommu_group_alloc);
 . . . . . .
/*
 * Generic device_group call-back function. It just allocates one
 * iommu-group per device.
 */
struct iommu_group *generic_device_group(struct device *dev)
{
	return iommu_group_alloc();
}
EXPORT_SYMBOL_GPL(generic_device_group);

generic_device_group() 函数分配一个新的 IOMMU group,它为 struct iommu_group 对象分配内存,初始化对象,获得 group ID,并创建 sysfs 文件。SMMUv3 设备驱动程序的 device_group() 回调为非 PCIe 分配新的 IOMMU group。

def_domain_type()/arm_smmu_device_domain_type()domain_alloc()/arm_smmu_domain_alloc() 在分配默认的 domain 阶段配合使用,前者用于获得默认的 domain 类型,后者用于分配 domain 对象。这两个回调实现如下:

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

	mutex_init(&smmu_domain->init_mutex);
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);
	INIT_LIST_HEAD(&smmu_domain->mmu_notifiers);

	return &smmu_domain->domain;
}
 . . . . . .
#ifdef CONFIG_SMMU_BYPASS_DEV
static int arm_smmu_device_domain_type(struct device *dev)
{
	int i;
	struct pci_dev *pdev;

	if (!dev_is_pci(dev))
		return 0;

	pdev = to_pci_dev(dev);
	for (i = 0; i < smmu_bypass_devices_num; i++) {
		if ((smmu_bypass_devices[i].vendor == pdev->vendor)	&&
			(smmu_bypass_devices[i].device == pdev->device)) {
			dev_info(dev, "device 0x%hx:0x%hx uses identity mapping.",
				pdev->vendor, pdev->device);
			return IOMMU_DOMAIN_IDENTITY;
		}
	}

	return 0;
}
#endif

对于 SMMUv3 设备驱动程序来说, def_domain_type()/arm_smmu_device_domain_type() 回调在开启 SMMU 绕过部分系统 I/O 设备特性时可用,且仅对于 PCIe 设备可用。此时,可以通过 Linux 内核的启动参数传入要绕过 SMMU 的 PCIe 设备的 vendor id 和 device id,def_domain_type()/arm_smmu_device_domain_type() 回调为这些设备返回 domain 类型 IOMMU_DOMAIN_IDENTITY,即绕过 SMMU。对于其它情况,采用全局的默认 domain 类型。

domain_alloc()/arm_smmu_domain_alloc() 回调根据传入的 domain 类型分配 domain 对象。Linux 的 IOMMU 子系统用 struct iommu_domain 对象表示 domain,SMMUv3 设备驱动程序继承自 struct iommu_domain 定义了自己的 domain 对象,即 struct arm_smmu_domaindomain_alloc()/arm_smmu_domain_alloc() 回调为 struct arm_smmu_domain 对象分配内存,并初始化其各个字段。当 domain 类型为 IOMMU_DOMAIN_DMA 时,还会为 domain 获得 dma cookie。iommu_get_dma_cookie() 函数定义 (位于 drivers/iommu/dma-iommu.c 文件中) 如下:

static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
	struct iommu_dma_cookie *cookie;

	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
	if (cookie) {
		INIT_LIST_HEAD(&cookie->msi_page_list);
		cookie->type = type;
	}
	return cookie;
}

/**
 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 * @domain: IOMMU domain to prepare for DMA-API usage
 *
 * IOMMU drivers should normally call this from their domain_alloc
 * callback when domain->type == IOMMU_DOMAIN_DMA.
 */
int iommu_get_dma_cookie(struct iommu_domain *domain)
{
	if (domain->iova_cookie)
		return -EEXIST;

	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
	if (!domain->iova_cookie)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);

SMMUv3 设备驱动程序的 attach_dev() 回调 arm_smmu_attach_dev() 用于连接系统 I/O 设备和 SMMUv3 设备,这个回调实现如下:

static void arm_smmu_detach_dev(struct arm_smmu_master *master)
{
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
		return;

	arm_smmu_disable_ats(master);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	master->domain = NULL;
	master->ats_enabled = false;
	arm_smmu_install_ste_for_dev(master);
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
	unsigned long flags;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_master *master;

	if (!fwspec)
		return -ENOENT;

	master = dev_iommu_priv_get(dev);
	smmu = master->smmu;

	/*
	 * Checking that SVA is disabled ensures that this device isn't bound to
	 * any mm, and can be safely detached from its old domain. Bonds cannot
	 * be removed concurrently since we're holding the group mutex.
	 */
	if (arm_smmu_master_sva_enabled(master)) {
		dev_err(dev, "cannot attach - SVA enabled\n");
		return -EBUSY;
	}

	arm_smmu_detach_dev(master);

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain, master);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   smmu_domain->stall_enabled != master->stall_enabled) {
		dev_err(dev, "cannot attach to stall-%s domain\n",
			smmu_domain->stall_enabled ? "enabled" : "disabled");
		ret = -EINVAL;
		goto out_unlock;
	} else if (smmu_domain->parent) {
		dev_err(dev, "cannot attach auxiliary domain\n");
		ret = -EINVAL;
		goto out_unlock;
	}

	master->domain = smmu_domain;

	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
		master->ats_enabled = arm_smmu_ats_supported(master);

	arm_smmu_install_ste_for_dev(master);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	arm_smmu_enable_ats(master);

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

arm_smmu_attach_dev() 函数做了这样一些事情:

  1. 检查系统 I/O 设备的 SVA 已经被禁用,以确保它没有绑定到任何 mm,且可以从老的 domain 安全地断开连接。

  2. 从老的 domain 断开连接:

    • 停用 ATS,仅用于 PCIe 设备;
    • 将系统 I/O 设备 (在 SMMUv3 设备驱动程序中由 struct arm_smmu_master 对象表示) 从 domain 的设备列表中移除;
    • 调用 arm_smmu_install_ste_for_dev() 函数为系统 I/O 设备安装流表 STE,此时系统 I/O 设备已经与 domain 断开连接,系统 I/O 设备的流表 STE 将被配置为旁路 SMMU。
  3. 对于非 PCIe 的一般系统 I/O 设备,每个设备都是一个独立 IOMMU group,也都有一个独立的 domain。如果 domain 没有和 SMMU 设备连接起来,则连接 domain 和 SMMU 设备,并调用 arm_smmu_domain_finalise() 函数配置 SMMU domain。

  4. 连接系统 I/O 设备与 domain。

  5. 调用 arm_smmu_install_ste_for_dev() 函数再次为系统 I/O 设备安装流表 STE,此时系统 I/O 设备已经与 domain 连接。

  6. 将系统 I/O 设备添加进 domain 的设备列表中。

  7. 开启 ATS,仅用于 PCIe 设备。

arm_smmu_domain_finalise() 函数配置 SMMU domain,这个函数定义如下:

static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct arm_smmu_master *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		if (smmu_domain->parent)
			finalise_stage_fn = arm_smmu_domain_finalise_cd;
		else
			finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= smmu->pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
		.tlb		= &arm_smmu_flush_ops,
		.iommu_dev	= smmu->dev,
	};

	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;
	if (smmu->features & ARM_SMMU_FEAT_HD)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_ARM_HD;

	if (smmu->features & ARM_SMMU_FEAT_BBML1)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_ARM_BBML1;
	else if (smmu->features & ARM_SMMU_FEAT_BBML2)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_ARM_BBML2;

	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
	domain->geometry.force_aperture = true;

	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
	if (ret < 0) {
		free_io_pgtable_ops(pgtbl_ops);
		return ret;
	}

	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
}

arm_smmu_domain_finalise() 函数的执行过程如下:

  1. 根据从 SMMUv3 设备的 SMMU_IDR* 寄存器读取的硬件特性及配置,如是否执行第 1 阶段地址转换,是否执行第 2 阶段地址转换,输入地址大小,输出地址大小等,来确定 IO 页表的格式和配置,及后面要执行的 finalise_stage_fn。对于一般的系统 I/O 设备驱动,只需要执行第 1 阶段的地址转换,IO 页表格式将是 ARM_64_LPAE_S1,后面要执行的 finalise_stage_fn 将是 arm_smmu_domain_finalise_s1()

  2. 根据前面获得的 IO 页表格式和配置,调用 alloc_io_pgtable_ops() 函数分配 IO 页表操作。

  3. 执行 finalise_stage_fn,对于一般的系统 I/O 设备驱动,即 arm_smmu_domain_finalise_s1() 函数。

  4. 连接 IO 页表操作和 domain。

alloc_io_pgtable_ops() 函数定义 (位于 drivers/iommu/io-pgtable.c 文件中) 如下:

static const struct io_pgtable_init_fns *
io_pgtable_init_table[IO_PGTABLE_NUM_FMTS] = {
#ifdef CONFIG_IOMMU_IO_PGTABLE_LPAE
	[ARM_32_LPAE_S1] = &io_pgtable_arm_32_lpae_s1_init_fns,
	[ARM_32_LPAE_S2] = &io_pgtable_arm_32_lpae_s2_init_fns,
	[ARM_64_LPAE_S1] = &io_pgtable_arm_64_lpae_s1_init_fns,
	[ARM_64_LPAE_S2] = &io_pgtable_arm_64_lpae_s2_init_fns,
	[ARM_MALI_LPAE] = &io_pgtable_arm_mali_lpae_init_fns,
#endif
#ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S
	[ARM_V7S] = &io_pgtable_arm_v7s_init_fns,
#endif
};

struct io_pgtable_ops *alloc_io_pgtable_ops(enum io_pgtable_fmt fmt,
					    struct io_pgtable_cfg *cfg,
					    void *cookie)
{
	struct io_pgtable *iop;
	const struct io_pgtable_init_fns *fns;

	if (fmt >= IO_PGTABLE_NUM_FMTS)
		return NULL;

	fns = io_pgtable_init_table[fmt];
	if (!fns)
		return NULL;

	iop = fns->alloc(cfg, cookie);
	if (!iop)
		return NULL;

	iop->fmt	= fmt;
	iop->cookie	= cookie;
	iop->cfg	= *cfg;

	return &iop->ops;
}
EXPORT_SYMBOL_GPL(alloc_io_pgtable_ops);

alloc_io_pgtable_ops() 函数根据传入的 IO 页表格式选择一组 IO 页表初始化操作,并利于 IO 页表初始化操作的分配操作分配一组 IO 页表,并将其中的 IO 页表操作返回。对于 ARM_64_LPAE_S1 格式,选中的 IO 页表初始化操作将是 io_pgtable_arm_64_lpae_s1_init_fns。这组 IO 页表初始化操作定义 (位于 drivers/iommu/io-pgtable-arm.c 文件中) 如下:

static void __arm_lpae_free_pgtable(struct arm_lpae_io_pgtable *data, int lvl,
				    arm_lpae_iopte *ptep)
{
	arm_lpae_iopte *start, *end;
	unsigned long table_size;

	if (lvl == data->start_level)
		table_size = ARM_LPAE_PGD_SIZE(data);
	else
		table_size = ARM_LPAE_GRANULE(data);

	start = ptep;

	/* Only leaf entries at the last level */
	if (lvl == ARM_LPAE_MAX_LEVELS - 1)
		end = ptep;
	else
		end = (void *)ptep + table_size;

	while (ptep != end) {
		arm_lpae_iopte pte = *ptep++;

		if (!pte || iopte_leaf(pte, lvl, data->iop.fmt))
			continue;

		__arm_lpae_free_pgtable(data, lvl + 1, iopte_deref(pte, data));
	}

	__arm_lpae_free_pages(start, table_size, &data->iop.cfg);
}

static void arm_lpae_free_pgtable(struct io_pgtable *iop)
{
	struct arm_lpae_io_pgtable *data = io_pgtable_to_data(iop);

	__arm_lpae_free_pgtable(data, data->start_level, data->pgd);
	kfree(data);
}
 . . . . . .
static struct arm_lpae_io_pgtable *
arm_lpae_alloc_pgtable(struct io_pgtable_cfg *cfg)
{
	struct arm_lpae_io_pgtable *data;
	int levels, va_bits, pg_shift;

	arm_lpae_restrict_pgsizes(cfg);

	if (!(cfg->pgsize_bitmap & (SZ_4K | SZ_16K | SZ_64K)))
		return NULL;

	if (cfg->ias > ARM_LPAE_MAX_ADDR_BITS)
		return NULL;

	if (cfg->oas > ARM_LPAE_MAX_ADDR_BITS)
		return NULL;

	data = kmalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return NULL;

	pg_shift = __ffs(cfg->pgsize_bitmap);
	data->bits_per_level = pg_shift - ilog2(sizeof(arm_lpae_iopte));

	va_bits = cfg->ias - pg_shift;
	levels = DIV_ROUND_UP(va_bits, data->bits_per_level);
	data->start_level = ARM_LPAE_MAX_LEVELS - levels;

	/* Calculate the actual size of our pgd (without concatenation) */
	data->pgd_bits = va_bits - (data->bits_per_level * (levels - 1));

	data->iop.ops = (struct io_pgtable_ops) {
		.map		= arm_lpae_map,
		.unmap		= arm_lpae_unmap,
		.iova_to_phys	= arm_lpae_iova_to_phys,
		.split_block	= arm_lpae_split_block,
		.merge_page	= arm_lpae_merge_page,
		.sync_dirty_log	= arm_lpae_sync_dirty_log,
		.clear_dirty_log = arm_lpae_clear_dirty_log,
	};

	return data;
}

static struct io_pgtable *
arm_64_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie)
{
	u64 reg;
	struct arm_lpae_io_pgtable *data;
	typeof(&cfg->arm_lpae_s1_cfg.tcr) tcr = &cfg->arm_lpae_s1_cfg.tcr;
	bool tg1;

	if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
			    IO_PGTABLE_QUIRK_NON_STRICT |
			    IO_PGTABLE_QUIRK_ARM_TTBR1 |
			    IO_PGTABLE_QUIRK_ARM_HD |
			    IO_PGTABLE_QUIRK_ARM_BBML1 |
			    IO_PGTABLE_QUIRK_ARM_BBML2))
		return NULL;

	data = arm_lpae_alloc_pgtable(cfg);
	if (!data)
		return NULL;

	/* TCR */
	if (cfg->coherent_walk) {
		tcr->sh = ARM_LPAE_TCR_SH_IS;
		tcr->irgn = ARM_LPAE_TCR_RGN_WBWA;
		tcr->orgn = ARM_LPAE_TCR_RGN_WBWA;
	} else {
		tcr->sh = ARM_LPAE_TCR_SH_OS;
		tcr->irgn = ARM_LPAE_TCR_RGN_NC;
		tcr->orgn = ARM_LPAE_TCR_RGN_NC;
	}

	tg1 = cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1;
	switch (ARM_LPAE_GRANULE(data)) {
	case SZ_4K:
		tcr->tg = tg1 ? ARM_LPAE_TCR_TG1_4K : ARM_LPAE_TCR_TG0_4K;
		break;
	case SZ_16K:
		tcr->tg = tg1 ? ARM_LPAE_TCR_TG1_16K : ARM_LPAE_TCR_TG0_16K;
		break;
	case SZ_64K:
		tcr->tg = tg1 ? ARM_LPAE_TCR_TG1_64K : ARM_LPAE_TCR_TG0_64K;
		break;
	}

	switch (cfg->oas) {
	case 32:
		tcr->ips = ARM_LPAE_TCR_PS_32_BIT;
		break;
	case 36:
		tcr->ips = ARM_LPAE_TCR_PS_36_BIT;
		break;
	case 40:
		tcr->ips = ARM_LPAE_TCR_PS_40_BIT;
		break;
	case 42:
		tcr->ips = ARM_LPAE_TCR_PS_42_BIT;
		break;
	case 44:
		tcr->ips = ARM_LPAE_TCR_PS_44_BIT;
		break;
	case 48:
		tcr->ips = ARM_LPAE_TCR_PS_48_BIT;
		break;
	case 52:
		tcr->ips = ARM_LPAE_TCR_PS_52_BIT;
		break;
	default:
		goto out_free_data;
	}

	tcr->tsz = 64ULL - cfg->ias;

	/* MAIRs */
	reg = (ARM_LPAE_MAIR_ATTR_NC
	       << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_NC)) |
	      (ARM_LPAE_MAIR_ATTR_WBRWA
	       << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_CACHE)) |
	      (ARM_LPAE_MAIR_ATTR_DEVICE
	       << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_DEV)) |
	      (ARM_LPAE_MAIR_ATTR_INC_OWBRWA
	       << ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_INC_OCACHE));

	cfg->arm_lpae_s1_cfg.mair = reg;

	/* Looking good; allocate a pgd */
	data->pgd = __arm_lpae_alloc_pages(ARM_LPAE_PGD_SIZE(data),
					   GFP_KERNEL, cfg);
	if (!data->pgd)
		goto out_free_data;

	/* Ensure the empty pgd is visible before any actual TTBR write */
	wmb();

	/* TTBR */
	cfg->arm_lpae_s1_cfg.ttbr = virt_to_phys(data->pgd);
	return &data->iop;

out_free_data:
	kfree(data);
	return NULL;
}
 . . . . . .
struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s1_init_fns = {
	.alloc	= arm_32_lpae_alloc_pgtable_s1,
	.free	= arm_lpae_free_pgtable,
};

io_pgtable_arm_64_lpae_s1_init_fns 的页表分配操作 arm_64_lpae_alloc_pgtable_s1(),它分两步分配 IO 页表:

  1. 调用 arm_lpae_alloc_pgtable() 分配 IO 页表结构,初始化包括 IO 页表操作在内的各种配置。

  2. 分配并创建 PGD。

arm_smmu_domain_finalise_s1() 函数定义如下:

static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
{
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
	struct arm_smmu_cmdq_batch cmds = {};
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	arm_smmu_preempt_disable(smmu);
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_streams; i++) {
			cmd.cfgi.sid = master->streams[i].id;
			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	arm_smmu_cmdq_batch_submit(smmu, &cmds);
	arm_smmu_preempt_enable(smmu);
}

static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
}

static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
{
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
				   u32 ssid)
{
	__le64 *l1ptr;
	unsigned int idx;
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;

	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;

	idx = ssid >> CTXDESC_SPLIT;
	l1_desc = &cdcfg->l1_desc[idx];
	if (!l1_desc->l2ptr) {
		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
			return NULL;

		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
		/* An invalid L1CD can be cached */
		arm_smmu_sync_cd(smmu_domain, ssid, false);
	}
	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
}

int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid,
			    struct arm_smmu_ctx_desc *cd)
{
	/*
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
	 * (4) Quiesce the context without clearing the valid bit. Disable
	 *     translation, and ignore any translation fault.
	 * (5) Remove a secondary CD.
	 */
	u64 val;
	bool cd_live;
	__le64 *cdptr;
	struct arm_smmu_device *smmu = smmu_domain->smmu;

	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
		return -E2BIG;

	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
	if (!cdptr)
		return -ENOMEM;

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);

	if (!cd) { /* (5) */
		val = 0;
	} else if (cd == &quiet_cd) { /* (4) */
		val |= CTXDESC_CD_0_TCR_EPD0;
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		u64 tcr = cd->tcr;

		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);

		if (!(smmu->features & ARM_SMMU_FEAT_HD))
			tcr &= ~CTXDESC_CD_0_TCR_HD;
		if (!(smmu->features & ARM_SMMU_FEAT_HA))
			tcr &= ~CTXDESC_CD_0_TCR_HA;

		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);

		val = tcr |
#ifdef __BIG_ENDIAN
			CTXDESC_CD_0_ENDI |
#endif
			CTXDESC_CD_0_R | CTXDESC_CD_0_A |
			(cd->mm ? 0 : CTXDESC_CD_0_ASET) |
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;

		if (smmu_domain->stall_enabled)
			val |= CTXDESC_CD_0_S;
	}

	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
}

static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
	int ret;
	size_t l1size;
	size_t max_contexts;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

	max_contexts = 1 << cfg->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cdcfg->num_l1_ents = max_contexts;

		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
					      sizeof(*cdcfg->l1_desc),
					      GFP_KERNEL);
		if (!cdcfg->l1_desc)
			return -ENOMEM;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}

	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
		ret = -ENOMEM;
		goto err_free_l1;
	}

	return 0;

err_free_l1:
	if (cdcfg->l1_desc) {
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;
	}
	return ret;
}
 . . . . . .
static int arm_smmu_domain_finalise_cd(struct arm_smmu_domain *smmu_domain,
				       struct arm_smmu_master *master,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
	u32 asid;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;

	refcount_set(&cfg->cd.refs, 1);

	ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	if (ret)
		return ret;

	cfg->cd.asid	= (u16)asid;
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_HA | CTXDESC_CD_0_TCR_HD |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
	return 0;
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct arm_smmu_master *master,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	/* Prevent SVA from modifying the ASID until it is written to the CD */
	mutex_lock(&arm_smmu_asid_lock);
	ret = arm_smmu_domain_finalise_cd(smmu_domain, master, pgtbl_cfg);
	if (ret)
		goto out_unlock;

	cfg->s1cdmax = master->ssid_bits;

	smmu_domain->stall_enabled = master->stall_enabled;

	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
		goto out_free_asid;

	/*
	 * Note that this will end up calling arm_smmu_sync_cd() before
	 * the master has been added to the devices list for this domain.
	 * This isn't an issue because the STE hasn't been installed yet.
	 */
	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
	if (ret)
		goto out_free_cd_tables;

	mutex_unlock(&arm_smmu_asid_lock);
	return 0;

out_free_cd_tables:
	arm_smmu_free_cd_tables(smmu_domain);
out_free_asid:
	arm_smmu_free_asid(&cfg->cd);
out_unlock:
	mutex_unlock(&arm_smmu_asid_lock);
	return ret;
}

arm_smmu_domain_finalise_s1() 函数的执行过程如下:

  1. 调用 arm_smmu_domain_finalise_cd() 函数,为 domain 获得 ASID,并根据前面获得的 IO 页表配置等信息创建第 1 阶段转换的 CD 配置。

  2. 调用 arm_smmu_alloc_cd_tables() 函数根据 SSID 位数计算 CD 表的项数,并分配 CD 表,分为两种情况来处理:

    • SMMUv3 硬件设备支持 2 级 CD 表,且 SSID 位数大于 CTXDESC_SPLIT(10),分配 L1 CD 描述符表,并分配与 L1 CD 描述符表项数相同的 struct arm_smmu_l1_ctx_desc 对象数组,struct arm_smmu_l1_ctx_desc 对象表示上下文描述符,但它主要由 CPU 访问,而不是 SMMUv3 硬件设备,它的内容将被以 SMMUv3 硬件设备支持的方式写入 L1 CD 描述符表的对应位置;
    • SMMUv3 硬件设备仅支持 1 级 CD 表,或者 SSID 位数小于 CTXDESC_SPLIT(10),直接分配 CD 表。
  3. 调用 arm_smmu_write_ctx_desc() 函数将上下文描述符写入 CD 表,这里 SSID 取了 0:

    • 调用 arm_smmu_get_cd_ptr() 函数得到 CD 指针,这可以分为两种情况:
      • 如果使用了 2 级 CD 表,先调用 arm_smmu_alloc_cd_leaf_table() 函数分配第 2 级 CD 表,调用 arm_smmu_write_cd_l1_desc() 函数将 L1 CD 描述符写入 L1 CD 描述符表的对应位置,调用 arm_smmu_sync_cd() 函数向命令队列发送命令以同步 CD,返回第 2 级 CD 表中对应位置的 CD 项指针,两个具体位置由传入的 SSID 确定。
      • 仅使用了 1 级 CD 表,返回 CD 表中对应位置的 CD 项指针,具体位置由传入的 SSID 确定。
    • 通过 CD 指针将 CD 配置写入 CD 项。
    • 调用 arm_smmu_sync_cd() 函数向命令队列发送命令以同步 CD。

arm_smmu_attach_dev() 函数中,arm_smmu_install_ste_for_dev() 函数用来最后将 CD 表配置等信息写入流表的 STE,这个函数定义如下:

static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

	if (val & STRTAB_STE_0_V) {
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
		case STRTAB_STE_0_CFG_ABORT:
			BUG_ON(!disable_bypass);
			break;
		default:
			BUG(); /* STE corruption */
		}
	}

	/* Nuke the existing STE_0 value, as we're going to rewrite it */
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
		else
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);

		dst[0] = cpu_to_le64(val);
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
		dst[2] = 0; /* Nuke the VMID */
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

	if (s1_cfg) {
		u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ?
			STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1;

		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, strw));

		if (master->prg_resp_needs_ssid)
			dst[1] |= cpu_to_le64(STRTAB_STE_1_PPAR);

		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		    !master->stall_enabled)
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
	}

	if (s2_cfg) {
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);

		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
	}

	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

	arm_smmu_sync_ste_for_sid(smmu, sid);
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(dst[0], cpu_to_le64(val));
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
}
 . . . . . .
static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
{
	int i, j;
	struct arm_smmu_device *smmu = master->smmu;

	for (i = 0; i < master->num_streams; ++i) {
		u32 sid = master->streams[i].id;
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
			if (master->streams[j].id == sid)
				break;
		if (j < i)
			continue;

		arm_smmu_write_strtab_ent(master, sid, step);
	}
}

arm_smmu_install_ste_for_dev() 函数为系统 I/O 设备的每个流执行如下操作:

  1. 根据 StreamID 获得对应的 STE 指针,分为两种情况来处理:

    • 使用了 2 级流表,返回第 2 级流表中对应的 STE 的指针;
    • 使用了 1 级流表,返回流表中对应的 STE 的指针。
  2. 调用 arm_smmu_write_strtab_ent() 函数写入流表 STE,这分为三种情况来处理:

    • 旁路 SMMU;
    • 使用第 1 阶段地址转换;
    • 使用第 2 阶段地址转换;
      arm_smmu_write_strtab_ent() 函数在写入流表 STE 后,会调用 arm_smmu_sync_ste_for_sid() 函数向命令队列发送命令,为流同步 STE。

arm_smmu_attach_dev() 函数的执行过程总结如下图:

linux_kernel_smmu_attach_dev

标签:SMMU,group,struct,iommu,smmu,dev,II,domain,IOMMU
From: https://www.cnblogs.com/wolfcs/p/17839455.html

相关文章

  • 安装 IIS 访问临时文件夹 C:\WINDOWS\TEMP\3C 读取/写入权限 错误: 0x80070005
    在windows中使用命令行方式安装IIS(Web服务器)WindowsServer2022安装IIS报错访问临时文件夹C:\WINDOWS\TEMP\3C读取/写入权限错误:0x80070005,可以使用命令行方式来安装和配置Web服务(IIS)。以下是使用DeploymentImageServicingandManagement(DISM)工具的步骤:1.打......
  • IIS中SSL证书过期更新的问题
    小程序访问后端接口报超时错: 查看证书已过期,如下:更新证书步骤如下:云服务器上下载最新有效期内证书: 下载下来的是压缩包,里面包含一个证书文件*.pfx和一个密钥文件*.txt,复制到服务器上备用。打开IIS服务管理器,点击计算机名称,双击‘服务器证书’ 双击打开服务器证书后......
  • 8、Flutter Paddiing组件
    Padding组件处理容器与子元素之间的间距。 classMyAppextendsStatelessWidget{constMyApp({super.key});@overrideWidgetbuild(BuildContextcontext){returnContainer(padding:constEdgeInsets.all(20),child:constIcon(Icons.abc_o......
  • ASCII码
    C语言中,字符型存储的编码是ASCII码,ASCII码是一种用于显示现代英语字符的编码。ASCII码使用7位二进制数表示一个字符,共有128个字符。ASCII码的取值范围是\([0,127]\)。ASCII码的具体内容如下:ASCII码字符ASCII码字符ASCII码字符ASCII码字符\(0\)[NUL]\(32\)\(6......
  • leet code 40. 组合总和 II
    40.组合总和II题目描述给定一个候选人编号的集合candidates和一个目标数target找出candidates中所有可以使数字和为target的组合。candidates中的每个数字在每个组合中只能使用一次。注意:解集不能包含重复的组合。示例1:输入:candidates=[10,1,2,7,6,1,5],targ......
  • 补偿 IIR 滤波器引入的延迟
    补偿IIR滤波器引入的延迟对信号进行滤波会引入延迟。这意味着相对于输入,输出信号在时间上有所偏移。无限冲激响应滤波器对某些频率分量的延迟可能比其他频率分量更长。它们会使输入信号呈现明显失真。函数 filtfilt 可补偿此类滤波器引入的延迟,从而校正滤波器失真。这种“零相......
  • 数字滤波器设计---IIR 滤波器设计
    数字滤波器设计---IIR滤波器设计IIR与FIR滤波器的比较与FIR滤波器相比,IIR滤波器的主要优点是,要满足同一组设定,它的滤波器阶数通常远远低于FIR滤波器。虽然IIR滤波器具有非线性相位,但MATLAB® 软件中的数据处理通常是“离线”执行的,即整个数据序列在滤波之前是可用的。......
  • Azure DevOps 发布.Net项目到Windows IIS站点之通过公网IP(账号、密码)
    在AzureDevOps中通过指定公网IP发布代码到指定目录#ASP.NETCore(.NETCore7.0)#BuildandtestASP.NETCoreprojectstargeting.NETCore7.0.#Addstepsthatpublishsymbols,savebuildartifacts,andmore:#https://docs.microsoft.com/azure/devops/pipeli......
  • Azure DevOps 发布.Net项目到Windows IIS站点之Azure项目发布内网VM
    当你有一个需求,需要通过AzureDevOps发布到一个没有公网的VM的时候,你将需要使用以下脚本trigger:-masterpool:vmImage:'windows-2022'variables:-name:Build.ArtifactStagingDirectoryvalue:'$(Build.Repository.LocalPath)\artifacts'-name:buildConf......
  • Quartz.Net 在IIS下不执行或多次执行解决
    不执行解决方法在IIS中打开程序对应的应用程序池【高级设置】1.设置应用程序池【回收】->【固定时间间隔(分钟)】为0。2.设置应用程序池【进程模型】->【闲置超时时间(分钟)】为0。执行多次解决方法在IIS中打开程序对应的应用程序池【高级设置】1.设置应用程序池【进程模型】->【......