首页 > 系统相关 >10.3 调试事件转存进程内存

10.3 调试事件转存进程内存

时间:2023-10-05 13:06:40浏览次数:56  
标签:文件 10.3 me32 pNt 内存 printf 进程 转存

我们继续延申调试事件的话题,实现进程转存功能,进程转储功能是指通过调试API使获得了目标进程控制权的进程,将目标进程的内存中的数据完整地转存到本地磁盘上,对于加壳软件,通常会通过加密、压缩等手段来保护其代码和数据,使其不易被分析。在这种情况下,通过进程转储功能,可以将加壳程序的内存镜像完整地保存到本地,以便进行后续的分析。

在实现进程转储功能时,主要使用调试API和内存读写函数。具体实现方法包括:以调试方式启动目标进程,将其暂停在运行前的位置;让目标进程进入运行状态;使用ReadProcessMemory函数读取目标进程内存,并将结果保存到缓冲区;将缓冲区中的数据写入文件;关闭目标进程的调试状态。

首先老样子先来看OnException回调事件,当进程被断下时首先通过线程函数恢复该线程的状态,在进程被正确解码并运行起来时直接将该进程的EIP入口地址传递给MemDump();内存转存函数,实现转存功能;

void OnException(DEBUG_EVENT *pDebug, BYTE *bCode)
{
    CONTEXT context;
    DWORD dwNum;
    BYTE bTmp;

    // 打开当前进程与线程
    HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pDebug->dwProcessId);
    printf("[+] 当前打开进程句柄: %d 进程PID: %d \n", hProcess, pDebug->dwProcessId);
    HANDLE hThread = OpenThread(THREAD_ALL_ACCESS, FALSE, pDebug->dwThreadId);
    printf("[+] 当前打开线程句柄: %d 线程PPID: %d \n", hThread, pDebug->dwThreadId);
    // 暂停当前线程
    SuspendThread(hThread);

    // 读取出异常产生的首地址
    ReadProcessMemory(hProcess, pDebug->u.Exception.ExceptionRecord.ExceptionAddress, &bTmp, sizeof(BYTE), &dwNum);
    printf("[+] 当前异常产生地址为: 0x%08X \n", pDebug->u.Exception.ExceptionRecord.ExceptionAddress);

    // 设置当前线程上下文,获取线程上下文
    context.ContextFlags = CONTEXT_FULL;
    GetThreadContext(hThread, &context);

    printf("[-] 恢复断点前: EAX = 0x%08X  EIP = 0x%08X \n", context.Eax, context.Eip);
    // 将刚才的CC断点取消,也就是回写原始的指令集
    WriteProcessMemory(hProcess, pDebug->u.Exception.ExceptionRecord.ExceptionAddress, bCode, sizeof(BYTE), &dwNum);

    // 当前EIP减一并设置线程上下文
    context.Eip--;
    SetThreadContext(hThread, &context);
    printf("[+] 恢复断点后: EAX = 0x%08X  EIP = 0x%08X \n", context.Eax, context.Eip);
    printf("[+] 获取到动态入口点: 0x%08x \n", pDebug->u.CreateProcessInfo.lpBaseOfImage);
    // 转储内存镜像
    MemDump(pDebug, context.Eip, (char *)"dump.exe");
    // 恢复线程
    ResumeThread(hThread);
    CloseHandle(hThread);
    CloseHandle(hProcess);
}

MemDump函数中,首先通过调用CreateFile函数打开me32.szExePath路径也就是转存之前的文件,通过使用VirtualAlloc分配内存空间,分配大小是PE头中文件实际大小,接着OpenProcess打开正在运行的进程,并使用ReadProcessMemory读取文件的数据,此处读取的实在内存中的镜像数据,当读取后手动修正,文件的入口地址,及文件的对齐方式,接着定位PE节区数据,找到节区首地址,并循环将当前节区数据赋值到新文件缓存中,最后当一切准备就绪,通过使用WriteFile函数将转存后的文件写出到磁盘中;

void MemDump(DEBUG_EVENT *pDe, DWORD dwEntryPoint, char *DumpFileName)
{
    // 得到当前需要操作的进程PID
    DWORD dwPid = pDe->dwProcessId;
    MODULEENTRY32 me32;

    // 对系统进程拍摄快照
    HANDLE hSnap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, dwPid);

    me32.dwSize = sizeof(MODULEENTRY32);
    // 得到第一个模块句柄,第一个模块句柄也就是程序的本体
    BOOL bRet = Module32First(hSnap, &me32);
    printf("[+] 当前转储原程序路径: %s \n", me32.szExePath);

    // 打开源文件,也就是dump之前的文件
    HANDLE hFile = CreateFile(me32.szExePath, GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
    if (hFile == INVALID_HANDLE_VALUE)
        exit(0);

    // 判断PE文件的有效性
    IMAGE_DOS_HEADER imgDos = { 0 };
    IMAGE_NT_HEADERS imgNt = { 0 };

    DWORD dwReadNum = 0;

    // 读入当前内存程序的DOS头结构
    ReadFile(hFile, &imgDos, sizeof(IMAGE_DOS_HEADER), &dwReadNum, NULL);
    // 判断是否是一个合格的DOS头
    if (imgDos.e_magic != IMAGE_DOS_SIGNATURE)
        return;
    // 设置文件指针到NT头上
    SetFilePointer(hFile, imgDos.e_lfanew, 0, FILE_BEGIN);
    ReadFile(hFile, &imgNt, sizeof(IMAGE_NT_HEADERS), &dwReadNum, NULL);
    // 判断是否是合格的NT头
    if (imgNt.Signature != IMAGE_NT_SIGNATURE)
        return;

    // 得到EXE文件的大小
    DWORD BaseSize = me32.modBaseSize;
    printf("[+] 当前内存文件大小: %d --> NT结构原始大小: %d 一致性检测: True \n", BaseSize, imgNt.OptionalHeader.SizeOfImage);

    // 如果PE头中的大小大于实际内存大小,则以PE头中大小为模板
    if (imgNt.OptionalHeader.SizeOfImage > BaseSize)
    {
        BaseSize = imgNt.OptionalHeader.SizeOfImage;
    }

    // 分配内存空间,分配大小是PE头中文件实际大小,并打开进程
    LPVOID pBase = VirtualAlloc(NULL, BaseSize, MEM_COMMIT, PAGE_READWRITE);
    printf("[+] 正在分配转储空间 句柄: %d \n", pBase);

    HANDLE hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwPid);

    // 读取文件的数据,此处读取的实在内存中的镜像数据
    bRet = ReadProcessMemory(hProcess, me32.modBaseAddr, pBase, me32.modBaseSize, NULL);

    // 判断PDOS头的有效性
    PIMAGE_DOS_HEADER pDos = (PIMAGE_DOS_HEADER)pBase;
    if (pDos->e_magic != IMAGE_DOS_SIGNATURE)
        return;

    // 计算出NT头数据
    PIMAGE_NT_HEADERS pNt = (PIMAGE_NT_HEADERS)(pDos->e_lfanew + (PBYTE)pBase);
    if (pNt->Signature != IMAGE_NT_SIGNATURE)
        return;

    // 设置文件的入口地址
    pNt->OptionalHeader.AddressOfEntryPoint = dwEntryPoint - pNt->OptionalHeader.ImageBase;
    printf("[*] 正在设置Dump文件相对RVA入口地址: 0x%08X \n", pNt->OptionalHeader.AddressOfEntryPoint);

    // 设置文件的对齐方式
    pNt->OptionalHeader.FileAlignment = 0x1000;
    printf("[*] 正在设置Dump文件的对齐值: %d \n", pNt->OptionalHeader.FileAlignment);

    // 找到节区首地址,并循环将当前节区数据赋值到新文件缓存中
    PIMAGE_SECTION_HEADER pSec = (PIMAGE_SECTION_HEADER)((PBYTE)&pNt->OptionalHeader + pNt->FileHeader.SizeOfOptionalHeader);
    for (int i = 0; i < pNt->FileHeader.NumberOfSections; i++)
    {
        pSec->PointerToRawData = pSec->VirtualAddress;
        printf("[+] 正在将虚拟地址: 0x%08X --> 设置到文件地址: 0x%08X \n", pSec->VirtualAddress, pSec->PointerToRawData);
        pSec->SizeOfRawData = pSec->Misc.VirtualSize;
        printf("[+] 正在将虚拟大小: %d --> 设置到文件大小: %d \n", pSec->Misc.VirtualSize, pSec->SizeOfRawData);
        pSec++;
    }
    CloseHandle(hFile);

    // 打开转储后的文件.
    hFile = CreateFile(DumpFileName, GENERIC_WRITE, FILE_SHARE_READ, 0, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
    if (hFile == INVALID_HANDLE_VALUE)
        exit(0);
    printf("[*] 转储 %s 文件到本地 \n", DumpFileName);

    DWORD dwWriteNum = 0;

    // 将读取的数据写入到文件
    bRet = WriteFile(hFile, pBase, me32.modBaseSize, &dwWriteNum, NULL);
    if (dwWriteNum != me32.modBaseSize || FALSE == bRet)
        printf("写入错误 !");
    // 关闭于释放资源
    CloseHandle(hFile);
    VirtualFree(pBase, me32.modBaseSize, MEM_RELEASE);
    CloseHandle(hProcess);
    CloseHandle(hSnap);
}

读者可自行运行这段程序,当程序运行后即可将指定的一个文件内存数据完整的转存到磁盘中,输出效果如下图所示;

本文作者: 王瑞 本文链接: https://www.lyshark.com/post/5e2f7b11.html 版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

标签:文件,10.3,me32,pNt,内存,printf,进程,转存
From: https://blog.51cto.com/lyshark/7711137

相关文章

  • openGauss学习笔记-90 openGauss 数据库管理-内存优化表MOT管理-内存表特性-使用MOT-M
    openGauss学习笔记-90openGauss数据库管理-内存优化表MOT管理-内存表特性-使用MOT-MOT使用重试中止事务在乐观并发控制(OCC)中,在COMMIT阶段前的事务期间(使用任何隔离级别)不会对记录进行锁定。这是一个能显著提高性能的强大优势。它的缺点是,如果另一个会话尝试更新相同的记录,则更新......
  • "堆"(Heap)和"栈"(Stack)两个重要的内存管理概念
    在Delphi和其他编程语言中,"堆"(Heap)和"栈"(Stack)是两个重要的内存管理概念,用于存储和管理程序中的数据和变量。它们有不同的特性和用途:堆(Heap):堆是一块动态分配的内存区域,用于存储对象、数据结构和变量。堆内存的分配和释放是由程序员手动控制的,通常使用New和Dispose(或GetMem和......
  • 10.3 调试事件转存进程内存
    我们继续延申调试事件的话题,实现进程转存功能,进程转储功能是指通过调试API使获得了目标进程控制权的进程,将目标进程的内存中的数据完整地转存到本地磁盘上,对于加壳软件,通常会通过加密、压缩等手段来保护其代码和数据,使其不易被分析。在这种情况下,通过进程转储功能,可以将加壳程序的......
  • FreeRTOS 原理 --- heap 堆内存的使用
    FreeRTOS一共提供了5种申请内存的方案heap1只申请不释放,内存利用率最高。申请出来的内存块,没有内存块头记录这个内存的大小,所以也无法释放,也正是没有内存块头,内存利用率高使用场景:不需要频繁申请内存heap2能申请能释放,不能合并内存块。每个内存块都有一个内存块头,有一个链表......
  • 苹果电脑磁盘满了怎么清理内存
    如果你是Mac用户,可能会面临一个常见但又令人头疼的问题——磁盘空间不足。这不仅影响了你的电脑性能,还可能导致新的软件无法安装,甚至影响到文件的保存。好消息是,有多种方法可以有效地解决这个问题。下面就一起来看看吧!一、手动清理清空垃圾箱你可能会觉得这很基础,但清空垃圾箱实际......
  • Java之对象内存分析
    相信大家有时候在读代码的时候应该都会有以下情况:这个对象本定义在上面,乱跑什么?怎么又到下面去了?欸?我明明改变了这个对象的值,怎么没变呢?要想搞清楚某一对象在程序中是怎样活蹦乱跳的,首先我们要对其内存的状况要有些了解。在java中,类是属于引用数据类型,而引用数据类型最大的......
  • 达梦数据库使用内存监控指导
    达梦数据库使用内存监控指导2.1如何判断内存池空闲还是紧张v$mem_pool可以查看所有内存池的使用信息。当前系统的内存池总大小可以通过以下语句查询,单位是M:selectname,--内存池名称is_shared,--是否是共享的is_overflow,--是否用到了备份池org_size/1024.0/1024.0,--......
  • 10.3 请求
    packagecom.example.springboottest;importorg.apache.catalina.User;importorg.springframework.format.annotation.DateTimeFormat;importorg.springframework.web.bind.annotation.*;importpojo.user;importjava.lang.reflect.Array;importjava.time.LocalD......
  • 2023.10.3——每日总结
    学习所花时间(包括上课):0h代码量(行):0行博客量(篇):1篇今天,上午学习+休息,下午学习+休息;我了解到的知识点:1.Vue2.终于有一段较长且不被打扰的时间,系统的学习一下JavaWeb,以https://www.bilibili.com/video/BV1m84y1w7Tb为准;明日计划:学习+休息......
  • 2023.10.3日报
    npminstallvue-router@3---用于vue2npminstallvue-router@4---用于vue3vue-router主要是用于跳转<template><!--<divid="app">--><!--<imgalt="Vuelogo"src="./assets/logo.png">--><!--<......