教程
https://colmap.github.io/install.html
前提
r900k 3070显卡
cuda11.5
opencv3.4.9
如果有acoda先从环境变量去掉,以免导致多重库问题
起作用 source ~/.bashrc
gcc 11 g++ 11
安装
sudo apt-get install \ git \ cmake \ ninja-build \ build-essential \ libboost-program-options-dev \ libboost-filesystem-dev \ libboost-graph-dev \ libboost-system-dev \ libeigen3-dev \ libflann-dev \ libfreeimage-dev \ libmetis-dev \ libgoogle-glog-dev \ libgtest-dev \ libsqlite3-dev \ libglew-dev \ qtbase5-dev \ libqt5opengl5-dev \ libcgal-dev \ libceres-dev
安装cuda支持
sudo apt-get install -y \ nvidia-cuda-toolkit \ nvidia-cuda-toolkit-gcc
Or, manually install latest CUDA from NVIDIA’s homepage. During CMake configuration specify CMAKE_CUDA_ARCHITECTURES as “native”, if you want to run COLMAP on your current machine only, “all”/”all-major” to be able to distribute to other machines, or a specific CUDA architecture like “75”, etc.
添加
122行
set(CMAKE_CUDA_ARCHITECTURES "native") # 添加
编译
git clone https://github.com/colmap/colmap.git cd colmap git checkout dev mkdir build cd build cmake .. -GNinja ninja sudo ninja install
标签:git,dev,CUDA,install,colmap,ubuntu20,安装,libboost From: https://www.cnblogs.com/gooutlook/p/17682885.html