首页 > 系统相关 >8.0 Python 使用进程与线程

8.0 Python 使用进程与线程

时间:2023-08-14 15:37:02浏览次数:49  
标签:__ 8.0 threading Python print 线程 进程 import

python 进程与线程是并发编程的两种常见方式。进程是操作系统中的一个基本概念,表示程序在操作系统中的一次执行过程,拥有独立的地址空间、资源、优先级等属性。线程是进程中的一条执行路径,可以看做是轻量级的进程,与同一个进程中的其他线程共享相同的地址空间和资源。

线程和进程都可以实现并发编程,但是它们之间有几点不同:

  • 线程间共享进程的内存空间,但进程间的内存空间是相互独立的;
  • 线程创建和销毁的开销较小,但是线程切换的开销较大;
  • 进程间通信需要较为复杂的 IPC(Inter-Process Communication)机制,线程间通信则可以直接读写共享内存;
  • 多进程可以充分利用多核 CPU 的性能,但是多线程受 GIL(Global Interpreter Lock)限制,只能利用单核 CPU 的性能。

在选择使用进程还是线程时,需要根据具体场景和需求进行权衡和选择。如果任务需要充分利用多核 CPU,且任务之间互不影响,可以选择多进程;如果任务之间需要共享资源和数据,可以选择多线程。同时,需要注意在 python 中使用多线程时,由于 GIL 的存在,可能无法实现真正的并行。

8.1 创建并使用线程

线程是操作系统调度的最小执行单元,是进程中的一部分,能够提高程序的效率。在python中,创建线程需要使用threading模块。该模块的实现方法是底层调用了C语言的原生函数来实现线程的创建和管理。在系统中,所有的线程看起来都是同时执行的,但实际上是由操作系统进行时间片轮转调度的。

使用函数创建线程: 创建线程并传递参数实现指定函数多线程并发,使用join方法,等待线程执行完毕后的返回结果.

import os,time
import threading
now = lambda:time.time()

def MyThread(x,y):                         # 定义每个线程要执行的函数体
    time.sleep(5)                          # 睡眠5秒钟
    print("传递的数据:%s,%s"%(x,y))         # 其中有两个参数,我们动态传入

if __name__ == "__main__":
    ThreadPool = []

    start = now()
    for item in range(10):                                             # 创建10个线程并发执行函数
        thread = threading.Thread(target=MyThread,args=(item,item+1,)) # args =>函数的参数
        thread.start()                                                 # 启动线程
        ThreadPool.append(thread)
    for item in ThreadPool:
        item.join()
        print("[+] 线程信息: {}".format(item))
    stop = now()
    print("[+] 线程总耗时: {} s".format(int(stop-start)))

使用类创建内部线程: 通过定义类,将线程函数与类进行结合实现一体化该方式调用方便思维明确.

import os,time
import threading

class MyThread(threading.Thread):
    def __init__(self,x,y):
        super(MyThread, self).__init__()
        self.x = x
        self.y = y

    def run(self):                       # 用于执行相应操作(固定写法)
        print("[+] 当前执行运算: {} + {}".format(self.x,self.y))
        self.result = self.x + self.y

    def get_result(self):                # 获取计算结果
        try:
            return self.result
        except Exception:
            return None

if __name__ == "__main__":
    ThreadPool = []

    for item in range(1,10):
        obj = MyThread(item,item+1)
        obj.start()
        ThreadPool.append(obj)

    for item in ThreadPool:
        item.join()
        print("[+] 获取返回: ",item.get_result())

使用类创建外部线程: 该定义方式与上方完全不同,我们可以将执行过程定义到类的外部为单独函数,然后类内部去调用传参.

import os,time
import threading

def MyThreadPrint(x,y):
    print("[+] 当前执行运算: {} + {}".format(x,y))
    result = x + y
    return result

class MyThread(threading.Thread):
    def __init__(self,func,args=()):
        super(MyThread, self).__init__()
        self.func = func
        self.args = args

    def run(self):
        self.result = self.func(*self.args)

    def get_result(self):
        try:
            return self.result
        except Exception:
            return None

if __name__ == "__main__":
    ThreadPool = []

    for item in range(1,10):
        obj = MyThread(func=MyThreadPrint,args=(item,item+1))
        obj.start()
        ThreadPool.append(obj)

    for item in ThreadPool:
        item.join()
        print("[+] 获取返回: ",item.get_result())

在线程中创建子线程: 通过创建一个守护线程,并让守护线程调用子线程,从而实现线程中调用线程,线程嵌套调用.

import time
import threading

# run => 子线程 => 由主线程调用它
def run(num):
    print("这是第 {} 个子线程".format(num))
    time.sleep(2)

# main = > 主守护线程 => 在里面运行5个子线程
def main():
    for each in range(5):
        thread = threading.Thread(target=run,args=(each,))
        thread.start()
        print("启动子线程: {} 编号: {}".format(thread.getName(),each))
    thread.join()

if __name__ == "__main__":
    daemon = threading.Thread(target=main,args=())
    daemon.setDaemon(True)   # 设置主线程为守护线程
    daemon.start()           # 启动守护线程
    daemon.join(timeout=10)  # 设置10秒后关闭,不论子线程是否执行完毕

简单的线程互斥锁(Semaphore): 同时允许一定数量的线程更改数据,也就是限制每次允许执行的线程数.

import threading,time
semaphore = threading.BoundedSemaphore(5)         #最多允许5个线程同时运行

def run(n):
    semaphore.acquire()                           #添加信号
    time.sleep(1)
    print("运行这个线程中: %s"%n)
    semaphore.release()                           #关闭信号

if __name__ == '__main__':
    for i in range(20):                           #同时执行20个线程
        t = threading.Thread(target=run, args=(i,))
        t.start()

while threading.active_count() != 1:              #等待所有线程执行完毕
    pass
else:
    print('----所有线程执行完毕了---')
import threading,time

class mythreading(threading.Thread):
    def run(self):
        semaphore.acquire()  #获取信号量锁
        print('running the thread:',self.getName())
        time.sleep(2)
        semaphore.release()  #释放信号量锁

if __name__ == "__main__":
    semaphore = threading.BoundedSemaphore(3) # 只运行3个线程同时运行
    for i in range(20):
        t1 = mythreading()
        t1.start()
    t1.join()

线程全局锁(Lock): 添加本全局锁以后,能够保证在同一时间内保证只有一个线程具有权限.

import time
import threading

num = 0                  #定义全局共享变量
thread_list = []         #线程列表
lock = threading.Lock()  #生成全局锁

def SumNumber():
    global num          #在每个线程中获取这个全局变量
    time.sleep(2)
    lock.acquire()      #修改数据前给数据加锁
    num += 1            #每次进行递增操作
    lock.release()      #执行完毕以后,解除锁定


for x in range(50):     #指定生成线程数
    thread = threading.Thread(target=SumNumber)
    thread.start()              #启动线程
    thread_list.append(thread)  #将结果列表加入到变量中

for y in thread_list:           #等待执行完毕.
    y.join()

print("计算结果: ",num)

线程递归锁(RLock): 递归锁和全局锁差不多,递归锁就是在大锁中还要添加个小锁,递归锁是常用的锁.

import threading
import time

num = 0                          #初始化全局变量
lock = threading.RLock()         #设置递归锁

def fun1():
    lock.acquire()              #添加递归锁
    global num
    num += 1
    lock.release()              #关闭递归锁
    return num

def fun2():
    lock.acquire()              #添加递归锁
    res = fun1()
    print("计算结果: ",res)
    lock.release()              #关闭递归锁

if __name__ == "__main__":
    for x in range(10):         #生成10个线程
        thread = threading.Thread(target=fun2)
        thread.start()

while threading.active_count() != 1:   #等待所有线程执行完成
    print(threading.active_count())
else:
    print("所有线程运行完成...")
    print(num)

线程互斥锁量控制并发: 使用BoundedSemaphore定义默认信号10,既可以实现控制单位时间内的程序并发量.

import os,time
import threading

def MyThread(x):
    lock.acquire()       # 上锁
    print("执行数据: {}".format(x))
    lock.release()       # 释放锁
    time.sleep(2)        # 模拟函数消耗时间
    threadmax.release()  # 释放信号,可用信号加1

if __name__ == "__main__":
    # 此处的BoundedSemaphore就是说默认给与10个信号
    threadmax = threading.BoundedSemaphore(10)  # 限制线程的最大数量为10个
    lock = threading.Lock()   # 将锁内的代码串行化(防止print输出乱行)
    ThreadPool = []           # 执行线程池

    for item in range(1,100):
        threadmax.acquire()  # 增加信号,可用信号减1
        thread = threading.Thread(target=MyThread,args=(item,))
        thread.start()
        ThreadPool.append(thread)

    for item in ThreadPool:
        item.join()

线程驱动事件(Event): 线程事件用于主线程控制其他线程的执行,事件主要提供了三个方法set、wait、clear、is_set,分别用于设置检测和清除标志.

import threading
event = threading.Event()

def func(x,event):
    print("函数被执行了: %s 次.." %x)
    event.wait()         # 检测标志位状态,如果为True=继续执行以下代码,反之等待.
    print("加载执行结果: %s" %x)

for i in range(10):      # 创建10个线程
    thread = threading.Thread(target=func,args=(i,event,))
    thread.start()

print("当前状态: %s" %event.is_set())      # 检测当前状态,这里为False
event.clear()                             # 将标志位设置为False,默认为False
temp=input("输入yes解锁新姿势: ")          # 输入yes手动设置为True
if temp == "yes":
    event.set()                           # 设置成True
    print("当前状态: %s" %event.is_set())  # 检测当前状态,这里为True
import threading

def show(event):
    event.wait()                     # 阻塞线程执行程序
    print("执行一次线程操作")

if __name__ == "__main__":
    event_obj = threading.Event()    # 创建event事件对象
    for i in range(10):
        t1 = threading.Thread(target=show,args=(event_obj,))
        t1.start()
        inside = input('>>>:')
        if inside == '1':
            event_obj.set() # 当用户输入1时set全局Flag为True,线程不再阻塞
        event_obj.clear()   # 将Flag设置为False

线程实现条件锁: 条件(Condition) 使得线程等待,只有满足某条件时,才释放N个线程.

import threading

def condition_func():
    ret = False
    inp = input(">> ")
    if inp == '1':
        ret = True
    return ret

def run(n):
    con.acquire()                # 条件锁
    con.wait_for(condition_func) # 判断条件
    print('running...',n)
    con.release()                # 释放锁

if __name__ == "__main__":
    con = threading.Condition()  # 建立线程条件对象
    for i in range(10):
        t = threading.Thread(target=run,args=(i,))
        t.start()
        t.join()

单线程异步并发执行: 在单线程下实现异步执行多个函数,返回耗时取决于最后一个函数的执行时间.

import time,asyncio

now = lambda :time.time()

async def GetSystemMem(sleep):
    print("[+] 执行获取内存异步函数.")
    await asyncio.sleep(sleep)   # 设置等待时间
    return 1

async def GetSystemCPU(sleep):
    print("[+] 执行获取CPU异步函数.")
    await asyncio.sleep(sleep)   # 设置等待时间
    return 1

if __name__ == "__main__":
    stop = now()
    mem = GetSystemMem(1)
    cpu = GetSystemCPU(4)

    task=[
        asyncio.ensure_future(mem),             # 将多个任务添加进一个列表
        asyncio.ensure_future(cpu)
    ]
    loop=asyncio.get_event_loop()               # 创建一个事件循环
    loop.run_until_complete(asyncio.wait(task)) # 开始并发执行

    for item in task:
        print("[+] 返回结果: ",item.result())    # 输出回调
    print('总耗时: {}'.format(stop - now()))

8.2 创建并使用进程

进程是指正在执行的程序,创建进程需要使用multiprocessing模块,创建方法和线程相同,但由于进程之间的数据需要各自持有一份,所以创建进程需要更大的开销。进程间数据不共享,多进程可以用来处理多任务,但很消耗资源。计算密集型任务最好交给多进程来处理,I/O密集型任务最好交给多线程来处理。另外,进程的数量应该和CPU的核心数保持一致,以充分利用系统资源。

使用进程函数执行命令: 通过系统提供的进程线程函数完成对系统命令的调用与执行.

>>> import os,subprocess
>>>
>>> os.system("ping -n 1 www.baidu.com")       # 在当前shell中执行命令
>>>
>>> ret = os.popen("ping -n 1 www.baidu.com")  # 在子shell中执行命令
>>> ret.read()
>>>
>>> subprocess.run("ping www.baidu.com",shell=True)
>>> subprocess.call("ping www.baidu.com", shell=True)
>>>
>>> ret = subprocess.Popen("ping www.baidu.com",shell=True,stdout=subprocess.PIPE)
>>> ret.stdout.read()

创建多进程与子线程: 通过使用multiprocessing库,循环创建4个主进程,而在每个主进程内部又起了5个子线程.

import multiprocessing
import threading,os

def ThreadingFunction():
    print("[-] ----> 子线程PPID: {}".format(threading.get_ident()))

def ProcessFunction(number):
    print("[*] -> 主进程PID: {} 父进程: {}".format(os.getpid(),os.getppid()))
    for i in range(5):                                       # 在主进程里开辟5个线程
        thread = threading.Thread(target=ThreadingFunction,) # 嵌套子线程
        thread.start()                                       # 执行子线程

if __name__ == "__main__":
    for item in range(4):                                    # 启动4个主进程
        proc = multiprocessing.Process(target=ProcessFunction,args=(item,))
        proc.start()
        proc.join()

使用基于类的方式创建进程: 除了使用函数式方式创建进程以外,我们还可以使用基于类的方式创建.

import os,time
from multiprocessing import Process

class Myprocess(Process):
    def __init__(self,person):
        super().__init__()
        self.person = person

    def run(self):
        print("[*] -> 当前PID: {}".format(os.getpid()))
        print("--> 传入的人名: {}".format(self.person))
        time.sleep(3)

if __name__ == '__main__':
    process = Myprocess("lyshark")
    #process.daemon = True # 设置p为守护进程
    process.start()

进程锁(Lock): 进程中也有锁,可以实现进程之间数据的一致性,也就是进程数据的同步,保证数据不混乱.

# 由并发变成了串行,牺牲了运行效率,但避免了竞争
import multiprocessing

def func(loc,num):
    loc.acquire()                        #添加进程锁
    print("hello ---> %s" %num)
    loc.release()                        #关闭进程锁

if __name__ == "__main__":
    lock = multiprocessing.Lock()        #生成进程锁

    for number in range(10):
        proc = multiprocessing.Process(target=func,args=(lock,number,))
        proc.start()

异步进程池: 进程池内部维护一个进程序列,当使用时则去进程池中获取一个进程,如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止.

import multiprocessing
import time

def ProcessFunction(number):
    time.sleep(2)
    print("[+] 进程执行ID: {}".format(number))

def ProcessCallback(arg):
    print("[-] 进程执行结束,执行回调函数")

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=5)               # 允许进程池同时放入5个进程
    for item in range(10):
        pool.apply_async(func=ProcessFunction,args=(item,),callback=ProcessCallback)
    pool.close()
    pool.join()
from multiprocessing import Pool, TimeoutError
import time,os

def f(x):
    return x*x

if __name__ == '__main__':
    #启动4个工作进程作为进程池
    with Pool(processes=4) as pool:
        #返回函数参数运行结果列表
        print(pool.map(f, range(10)))
        #在进程池中以任意顺序打印相同的数字
        for i in pool.imap_unordered(f, range(10)):
            print(i,end=' ')
        #异步评估
        res = pool.apply_async(f,(20,))      #在进程池中只有一个进程运行
        print('\n',res.get(timeout=1))       #打印结果,超时为1秒
        #打印该进程的PID
        res = pool.apply_async(os.getpid,()) #在进程池中只有一个进程运行
        print(res.get(timeout=1))            #打印进程PID

        #打印4个进程的PID
        multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]
        print([res.get(timeout=1) for res in multiple_results])

        #进程等待10秒,获取数据超时为1秒,将输出异常
        res = pool.apply_async(time.sleep, (10,))
        try:
            print(res.get(timeout=1))
        except TimeoutError:
            print("We lacked patience and got a multiprocessing.TimeoutError")

8.3 多进程数据共享

一般当我们创建两个进程后,进程各自持有一份数据,默认无法共享数据,如果我们想要共享数据必须通过一个中间件来实现数据的交换,来帮你把数据进行一个投递,要实现进程之间的数据共享,其主要有以下几个方法来实现进程间数据的共享.

共享队列(Queue): 这个Queue主要实现进程与进程之间的数据共享,与线程中的Queue不同.

from multiprocessing import Process
from multiprocessing import queues
import multiprocessing
 
def foo(i,arg):
    arg.put(i)
    print('say hi',i,arg.qsize())
 
li = queues.Queue(20,ctx=multiprocessing)
 
for i in range(10):
    p = Process(target=foo,args=(i,li,))
    p.start()

共享整数(int): 整数之间的共享,只需要使用multiprocessing.Value方法,即可实现.

import multiprocessing

def func(num):
    num.value = 1024                              #虽然赋值了,但是子进程改变了这个数值
    print("函数中的数值: %s"%num.value)


if __name__ == "__main__":
    num = multiprocessing.Value("d",10.0)         #主进程与子进程共享这个value
    print("这个共享数值: %s"%num.value)

    for i in range(5):
        num = multiprocessing.Value("d", i)      #声明进程,并传递1,2,3,4这几个数
        proc = multiprocessing.Process(target=func,args=(num,))
        proc.start()                             #启动进程
        #proc.join()
        print("最后打印数值: %s"%num.value)

共享数组(Array): 数组之间的共享,只需要使用multiprocessing.Array方法,即可实现.

import multiprocessing


def func(ary):       #子进程改变数组,主进程跟着改变
    ary[0]=100
    ary[1]=200
    ary[2]=300

''' i所对应的类型是ctypes.c_int,其他类型如下参考:
    'c': ctypes.c_char,  'u': ctypes.c_wchar,
    'b': ctypes.c_byte,  'B': ctypes.c_ubyte,
    'h': ctypes.c_short, 'H': ctypes.c_ushort,
    'i': ctypes.c_int,   'I': ctypes.c_uint,
    'l': ctypes.c_long,  'L': ctypes.c_ulong,
    'f': ctypes.c_float, 'd': ctypes.c_double
'''

if __name__ == "__main__":
    ary = multiprocessing.Array("i",[1,2,3])   #主进程与子进程共享这个数组

    for i in range(5):
        proc = multiprocessing.Process(target=func,args=(ary,))
        print(ary[:])
        proc.start()

共享字典(dict): 通过使用Manager方法,实现两个进程中的,字典与列表的数据共享.

import multiprocessing

def func(mydict, mylist):
    mydict["字典1"] = "值1"
    mydict["字典2"] = "值2"
    mylist.append(1)
    mylist.append(2)
    mylist.append(3)

if __name__ == "__main__":

    mydict = multiprocessing.Manager().dict()        #主进程与子进程共享字典
    mylist = multiprocessing.Manager().list()        #主进程与子进程共享列表

    proc = multiprocessing.Process(target=func,args=(mydict,mylist))
    proc.start()
    proc.join()

    print("列表中的元素: %s" %mylist)
    print("字典中的元素: %s" %mydict)

管道共享(Pipe): 通过Pipe管道的方式在两个进程之间共享数据,类似于Socket套接字.

import multiprocessing

def func(conn):
    conn.send("你好我是子进程.")                      #发送消息给父进程
    print("父进程传来了:",conn.recv())                #接收父进程传来的消息
    conn.close()

if __name__ == "__main__":
    parent_conn,child_conn = multiprocessing.Pipe()  #管道创建两个端口,一收一发送
    proc = multiprocessing.Process(target=func,args=(child_conn,))
    proc.start()

    print("子进程传来了:",parent_conn.recv())         #接收子进程传来的数据
    parent_conn.send("我是父进程,收到消息了..")        #父进程发送消息给子进程

本文作者: 王瑞
本文链接: https://www.lyshark.com/post/b4dd0803.html
版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

标签:__,8.0,threading,Python,print,线程,进程,import
From: https://www.cnblogs.com/LyShark/p/17628767.html

相关文章

  • 6.0 Python 使用函数装饰器
    装饰器可以使函数执行前和执行后分别执行其他的附加功能,这种在代码运行期间动态增加功能的方式,称之为"装饰器"(Decorator),装饰器的功能非常强大,装饰器一般接受一个函数对象作为参数,以对其进行增强,相当于C++中的构造函数,与析构函数。装饰器本质上是一个python函数,它可以让其他函数......
  • 7.0 Python 面向对象编程
    python是一种面向对象的编程语言,面向对象编程(Object-OrientedProgramming,OOP)是一种编程思想,其核心概念是“对象”。对象是指一个具有特定属性和行为的实体,而面向对象编程就是通过对这些实体进行抽象、分类、封装和继承等操作,来实现程序的结构和逻辑。在python中,我们可以通过定义类......
  • 9.0 Python 内置模块应用
    Python是一种高级、面向对象、通用的编程语言,由GuidovanRossum发明,于1991年首次发布。Python的设计哲学强调代码的可读性和简洁性,同时也非常适合于大型项目的开发。Python语言被广泛用于Web开发、科学计算、人工智能、自动化测试、游戏开发等各个领域,并且拥有丰富的第三方库......
  • 8.0 Python 使用进程与线程
    python进程与线程是并发编程的两种常见方式。进程是操作系统中的一个基本概念,表示程序在操作系统中的一次执行过程,拥有独立的地址空间、资源、优先级等属性。线程是进程中的一条执行路径,可以看做是轻量级的进程,与同一个进程中的其他线程共享相同的地址空间和资源。线程和进程都可......
  • 6.0 Python 使用函数装饰器
    装饰器可以使函数执行前和执行后分别执行其他的附加功能,这种在代码运行期间动态增加功能的方式,称之为"装饰器"(Decorator),装饰器的功能非常强大,装饰器一般接受一个函数对象作为参数,以对其进行增强,相当于C++中的构造函数,与析构函数。装饰器本质上是一个python函数,它可以让其他函......
  • C# System.InvalidOperationException:“线程间操作无效: 从不是创建控件“****”的线
     在程序主入口,构造函数加载时,添加如下代码//如果捕获了对错误线程的调用,则为true;否则为falseSystem.Windows.Forms.Control.CheckForIllegalCrossThreadCalls=false;解释:多线程程序中,新创建的线程不能访问UI线程创建的窗口控件,这时如果想要访问窗口的控......
  • Python基础day65 BBS个人博客项目完整搭建
    BBS-个人博客项目的完整搭建项目开发流程一、项目分类现在互联网公司需要开发的主流web项目一般分为两类:面向互联网用户,和公司内部管理。面向互联网用户:C(consumer)端项目公司内部管理:B(business)端项目还有一类web应用,基本采用基于角色的权限控制,不同的员工在这套系统......
  • 软件测试|Python科学计算神器numpy教程(五)
    NumPy的高级索引功能前言NumPy是Python中最受欢迎的科学计算库之一,它提供了丰富的功能来处理和操作数组数据。在本文中,我们将深入了解NumPy的高级索引功能,这些功能允许我们根据特定条件或索引数组来访问和修改数组的元素,为数据科学和数组操作提供了更大的灵活性和控制力。NumP......
  • 软件测试|Python科学计算神器numpy教程(六)
    NumPy的广播机制前言NumPy是Python中最受欢迎的科学计算库之一,它提供了高性能的多维数组对象和丰富的数组操作功能。其中,广播机制是NumPy的重要特性之一,它允许不同形状的数组进行算术运算,提供了灵活而高效的数组操作能力。在本文中,我们将深入探讨NumPy的广播机制,以便更好地理解......
  • Python实现透明隧道代理:不影响现有网络结构
    作为一名专业爬虫程序员,我们常常需要使用隧道代理来保护个人隐私和访问互联网资源。本文将分享如何使用Python实现透明隧道代理,以便在保护隐私的同时不影响现有网络结构。通过实际操作示例和专业的解析,我们将带您深入了解透明隧道代理的工作原理,并提供实用的操作价值。首先了解一下......