首页 > 系统相关 >【重学C++】01| C++ 如何进行内存资源管理?

【重学C++】01| C++ 如何进行内存资源管理?

时间:2023-05-20 20:00:47浏览次数:53  
标签:std 释放 01 函数 C++ ptr 内存 资源管理

文章首发

【重学C++】01| C++ 如何进行内存资源管理?

前言

大家好,我是只讲技术干货的会玩code,今天是【重学C++】的第一讲,我们来学习下C++的内存管理。

与java、golang等自带垃圾回收机制的语言不同,C++并不会自动回收内存。我们必须手动管理堆上内存分配和释放,这往往会导致内存泄漏和内存溢出等问题。而且,这些问题可能不会立即出现,而是运行一段时间后,才会暴露出现,排查也很困难。因此,了解和掌握C++中的内存管理技巧和工具是非常重要的,可以提高程序性能、减少错误和增加安全性。

内存分区

在C++中,将操作系统分配给程序的内存空间按照用途划分了代码段、数据段、栈、堆几个不同的区域,每个区域都有其独特的内存管理机制。

代码区

代码区是用于存储程序代码的区域,代码段在程序真正执行前就被加载到内存中,在程序执行期间,代码区内存不会被修改和释放。

由于代码区是只读的,所以会被多个进程共享。在多个进程同时执行同一个程序时,操作系统只需要将代码段加载到内存中一次,然后让多个进程共享这个内存区域即可。

数据段

数据段用于存储静态全局变量、静态局部变量和静态常量等静态数据。在程序运行期间,数据段的大小固定不变,但其内容可以被修改。按照变量是否被初始化。数据段可分为已初始化数据段和未初始化数据段。

C++中函数调用以及函数内的局部变量的使用,都是通过栈这个内存分区实现的。栈分区由操作系统自动分配和释放,是一种"后进先出"的一种内存分区。每个栈的大小是固定的,一般只有几MB,所以如果栈变量太大,或者函数调用嵌套太深,容易发生栈溢出(stack overflow)。

先来一段示例代码,看看C++是如何使用栈进行使用栈来进行函数调用的。

#include <iostream>

void inner(int a) {
    std::cout << a << std::endl;
}
void outer(int n) {
	int a = n + 1;
    inner(a);
}

int main() {
    outer(4);
}

上面这段代码运行过程中的栈变化如下图
image.png

每当程序调用一个函数时,该函数的参数、局部变量和返回地址等信息会被压入栈中。当函数执行完毕,再将这些信息从栈中弹出。根据之前压入的外层调用者压入栈的返回地址,返回到外层调用者未执行的代码继续执行。

本地变量是直接存储在栈上的,当函数执行完成后,这些变量占用的内存就会被释放掉了。前面例子中的本地变量是简单类型,在C++中称为POD类型。对于带有构造和析构函数的非POD类型变量,栈上的内存分配同样有效。编译器会在合适的时机,插入对构造函数和析构函数的调用。

这里有个问题,当函数执行发生异常时,析构函数还会被调用吗?
答案是会的,C++对于发生异常时对析构函数的调用称为"栈展开"。通过下面这段代码演示栈展开。

#include <iostream>
#include <string>

class Obj {
public:
    std::string name_;
    Obj(const std::string& name):name_(name){std::cout << "Obj() " << name_ << std::endl;};
    ~Obj() {std::cout << "~Obj() " << name_ << std::endl;};
};


void bar() {
    auto o = Obj{"bar"};
    throw "bar exception";
}

int main() {
    try {
        bar();
    } catch (const char* e) {
        std::cout << "catch Exception: " << e << std::endl;
    }
}

执行代码的结果是:

Obj() bar
~Obj() bar
catch Exception: bar exception

可以发现,发生异常时,bar函数中的本地变量o还是能被正常析构。

栈展开的过程实际上是异常发生时,匹配catch子句的过程。

  1. 程序抛出异常,停止当前执行的调用链,开始寻找与异常匹配的catch子句。
  2. 如果异常发生在try中,则会首先检查与该try块匹配的catch子句。如果异常所在函数体没有try捕获异常。则会直接进入下一步。
  3. 如果第二步未找到匹配的catch,则会在外层的try块中查找,直到找到为止。
  4. 如果到了最外层还没有找到匹配的catch,也就是说异常得不到处理,程序会调用标准库函数terminate终止函数的执行。

在这期间,栈上所有的对象都会被自动析构。

堆是C++中用来存储动态分配内存的内存分区,堆内存的分配和释放需要手动管理,可以通过new/delete或malloc/free等函数进行分配和释放。堆内存的大小通常是不固定的,当我们需要动态分配内存时,就可以使用堆内存。

堆内存由程序员手动分配和释放,因此使用堆内存需要注意内存泄漏和内存溢出等问题。当程序员忘记释放已分配的内存时,会导致内存泄漏问题。而当申请的堆内存超过了操作系统所分配给进程的内存限制时,会导致内存溢出问题。

C++程序绝大多数的内存泄露,都是由于忘记调用delete/free来释放堆上的资源。

还是上代码

#include <iostream>
#include <string>

class Obj {
public:
    std::string name_;
    Obj(const std::string& name):name_(name){std::cout << "Obj() " << name_ << std::endl;};
    ~Obj() {std::cout << "~Obj() " << name_ << std::endl;};
};

Obj* makeObj() {
	Obj* obj = nullptr;
	try {
		obj = new Obj{"makeObj"};
		...
	} catch(...) {
		delete obj;
		throw;
	}
	return obj;
}

Obj* foo() {
	Obj* obj = nullptr;
	try {
		obj = makeObj();
		...
	} catch(...) {
		delete obj;
	}
	return obj;
}
int main() {
    Obj* obj = foo();
    ...
    delete obj;
}

可以看到,由makeObj函数创建的堆变量obj, 在每个获取该变量的上层调用中,都需要关心对该变量的处理。这无疑极大得增加了开发者的心智负担。

RAII

想在堆上创建对象,又不想处理这么复杂的内存释放操作。C++没有像java、golang其他语言创建一套垃圾回收机制,而是采用了一种特有的资源管理方式 --- RAII(Resource Acquisition Is Initialization,资源获取即初始化)。

RAII利用栈对象在作用域结束后会自动调用析构函数的特点,通过创建栈对象来管理资源。在栈对象构造函数中获取资源,在栈对象析构函数中负责释放资源,以此保证资源的获取和释放。

下面给出一个通过RAII来自动释放堆内存的例子

#include <iostream>

class AutoIntPtr {
public:
    AutoIntPtr(int* p = nullptr) : ptr(p) {}
    ~AutoIntPtr() { delete ptr; }

    int& operator*() const { return *ptr; }
    int* operator->() const { return ptr; }

private:
    int* ptr;
};

void foo() {
	AutoIntPtr p(new int(5));
    std::cout << *p << std::endl; // 5
}

int main() {
    foo();
}

上面例子中,AutoIntPtr类封装了一个动态分配的int类型的指针,它的构造函数用于获取资源(ptr = p),析构函数用于释放资源(delete ptr)。当AutoIntPtr超出作用域时,自动调用析构函数来释放所包含的资源。

基于RAII,C++11引入了std::unique_ptrstd::shared_ptr等智能指针用于内存管理类,使得内存管理变得更加方便和安全。这些内存管理类可以自动进行内存释放,避免了手动释放内存的繁琐工作。值得一提的是,上面的AutoIntPtr就是一个简化版的智能指针了。

在实际开发中,RAII的应用很广。不仅仅用于自动释放内存。还可以用来关闭文件、释放数据库连接、释放同步锁等。

总结

本文介绍了C++中的内存管理机制,包括内存分区、栈、堆和RAII技术等内容。通过学习本文,我们可以更好地掌握C++的内存管理技巧,避免内存泄漏和内存溢出等问题。

标签:std,释放,01,函数,C++,ptr,内存,资源管理
From: https://www.cnblogs.com/huiwancode/p/17417705.html

相关文章

  • 01、蓝牙概述
    一、名称由来蓝牙这个名称来自于第十世纪的一位丹麦国王哈拉尔蓝牙王,哈拉尔蓝牙王Blatand在英文里的意思可以被解释为Bluetooth(蓝牙)因为国王喜欢吃蓝莓,牙龈每天都是蓝色的所以叫蓝牙。在行业协会筹备阶段,需要一个极具有表现力的名字来命名这项高新技术。行业组织人员,......
  • 01、ADAU1701
    一、ADAU1701简介    ADAU1701是一款完整的单芯片音频系统,包含28/56bit音频DSP、ADC、DAC以及类似微控制器的控制接口。信号处理包括平衡、混音、低音增强、多波段动态处理、延迟补偿以及立体声图像扩展等,可以对现实世界的扬声器、放大器与收听环境的限制进行补偿,对感受到......
  • ABBAC900F学习笔记301:使用securityLock做解除联锁按钮的权限限制功能
    这一篇学习笔记,我在新浪博客记录过,因为担心丢失,在这里再记录一遍,新浪博客地址ABBAC900F学习笔记301:使用securityLock做解除联锁按钮的权限限制功能_来自金沙江的小鱼_新浪博客(sina.com.cn) 这个学习练习,实际上还是在以前学习基础上做的,没有多少新意,权当复习一遍吧。在虚拟......
  • C++中动态和静态库(dll) 使用(转)
    目录:1.lib与dll介绍2.动态库的生成与使用3.静态库的生成与使用 1.首先介绍下静态库(静态链接库,.lib文件),动态库*(动态链接库,.dll文件)的概念,两者都是代码共享的方式.静态链接:静态链接是指在编译的时候就把模块的内容加载进来一起编译,这样编出来的exe文件包含了模块......
  • 《程序员修炼之道--从小工到专家》阅读笔记01
    《程序员修炼之道–从小工到专家》是一本经典的软件开发实践指南书籍,被许多程序员视为进阶必读之书。以下是本人对该书第一章节的阅读笔记。第一章节题为:为什么需要修炼?显然,程序员和武林中的武功修炼者一样,都需要经过长期的学习、训练和实践,才能成为真正的专家。而与武术不同的是......
  • 低压球泡灯 线性恒流方案 线路图AP5101B 线性恒流芯片
    1,方案来源:深圳市世微半导体有限公司汤巧2,产品描述AP5101B是一款高压线性LED恒流芯片,外围简单、内置功率管,适用于6-60V输入的高精度降压LED恒流驱动芯片。最大电流1.0A。AP5101B可实现内置MOS做1.0A,外置MOS可做2.0A的。AP5101B内置温度保护功能,温度保护点为130......
  • Windows Server2019网卡桥接与网卡聚合在实际工作中经验总结
    WindowsServer2019网卡桥接与网卡聚合在实际工作中经验总结1、WindowsServer2019网卡桥接与网卡聚合的区别   桥接:只是在服务器端的多个网卡进行桥接,交换机端不能做聚合,在实际工作中,桥接网卡会产MAC地址漂移,如果用MAC地址控制会产生断网故障。(注意:这是服务这边桥接,交换......
  • C/C++学生宿舍管理系统[2023-05-20]
    C/C++学生宿舍管理系统[2023-05-20]课程报告任务书题目学生宿舍管理系统主要内容用C语言开发一个简单的学生宿舍管理系统。实现宿舍信息管理,用户信息管理以及住宿管理功能。【数据结构】1.宿舍信息。包括:宿舍编号、所属楼号,所属楼层、面积、床位数等。2.登陆账号信息。包括:......
  • c和c++各种类型数据左移溢出对比
    cint:1#include<stdio.h>2main(){3//int4intj=1;//<<31==21474836485//1<<32==16//(1<<32)-1==07//(1<<32)-2==42949672958for(inti=30;i<(1<<5)+1;i......
  • C/C++家谱管理[2023-05-20]
    C/C++家谱管理[2023-05-20]家谱管理中国历史悠久,中华民族有五千年的文明史。从远古的神话传说时代、尧舜禹的禅让、夏商西周、东周春秋战国的百家争鸣、秦汉一统、三国战乱、魏晋南北朝的民族大融合、隋唐五代光辉灿烂的文化直到宋元明清帝制结束。五千年的历史留给我们的是无尽......