进程:process
线程:thread
Python多进程和多线程哪个快
由于GIL的存在,很多人认为Python多进程编程更快,针对多核CPU,理论上来说也是采用多进程更能有效利用资源。但这不是说明多线程就没意义了,还是得根据实际场景来看。对CPU密集型代码(比如循环计算),多进程效率更高。
对IO密集型代码(比如文件操作、网络爬虫),多线程效率更高。
好像还是很抽象,该如何理解呢?对于IO密集型操作,大部分消耗时间其实是等待时间,在等待中CPU是不需要工作的,那么在此期间提供多个CPU资源也是利用不上的,python碰到等待会释放GIL供新的线程使用,实现了线程间的切换。相反对于CPU密集型代码,多个CPU干活肯定比一个CPU快很多。
————————————————
版权声明:本文为CSDN博主「rs勿忘初心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sinat_33718563/article/details/119716436
一、多进程的概念
由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。
但在使用这些共享API的时候,我们要注意以下几点:
- 在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
- multiprocessing提供了threading包中没有的IPC(比如Pipe和Queue),效率上更高。应优先考虑Pipe和Queue,避免使用Lock/Event/Semaphore/Condition等同步方式 (因为它们占据的不是用户进程的资源)。
- 多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。
Process.PID中保存有PID,如果进程还没有start(),则PID为None。
window系统下,需要注意的是要想启动一个子进程,必须加上那句if __name__ == "main",进程相关的要写在这句下面。
实例:
from multiprocessing import Process
import time
def f(name):
time.sleep(1)
print('hello', name,time.ctime())
if __name__ == '__main__':
p_list=[]
for i in range(3):
p = Process(target=f, args=('alvin',))
p_list.append(p)
p.start()
for i in p_list:
p.join()
print('end')
类式调用
from multiprocessing import Process
import time
class MyProcess(Process):
def __init__(self):
super(MyProcess, self).__init__()
#self.name = name
def run(self):
time.sleep(1)
print ('hello', self.name,time.ctime())
if __name__ == '__main__':
p_list=[]
for i in range(3):
p = MyProcess()
p.start()
p_list.append(p)
for p in p_list:
p.join()
print('end')
To show the individual process IDs involved, here is an expanded example:
from multiprocessing import Process
import os
import time
def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())
def f(name):
info('\033[31;1mfunction f\033[0m')
print('hello', name)
if __name__ == '__main__':
info('\033[32;1mmain process line\033[0m')
time.sleep(100)
p = Process(target=info, args=('bob',))
p.start()
p.join()
二、Process类
2.1 构造方法
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
2.2 实例方法:
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程
2.3 属性
authkey
daemon:和线程的setDeamon功能一样
exitcode(进程在运行时为None、如果为–N,表示被信号N结束)
name:进程名字。
pid:进程号。
import time
from multiprocessing import Process
def foo(i):
time.sleep(1)
print (p.is_alive(),i,p.pid)
time.sleep(1)
if __name__ == '__main__':
p_list=[]
for i in range(10):
p = Process(target=foo, args=(i,))
#p.daemon=True
p_list.append(p)
for p in p_list:
p.start()
# for p in p_list:
# p.join()
print('main process end')
三、进程间通讯
不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法:
3.1 Queues
使用方法跟threading里的queue类似:
from multiprocessing import Process, Queue
def f(q,n):
q.put([42, n, 'hello'])
if __name__ == '__main__':
q = Queue()
p_list=[]
for i in range(3):
p = Process(target=f, args=(q,i))
p_list.append(p)
p.start()
print(q.get())
print(q.get())
print(q.get())
for i in p_list:
i.join()
3.2 Pipes
Pipe() 函数返回一对由管道连接的连接对象,默认情况下是双工的(双向)。例如:
from multiprocessing import Process, Pipe
def f(conn):
conn.send([42, None, 'hello'])
conn.close()
if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, 'hello']"
p.join()
Pipe() 返回的两个连接对象代表管道的两端。每个连接对象都有 send() 和 recv() 方法(等等)。请注意,如果两个进程(或线程)尝试同时读取或写入管道的同一端,则管道中的数据可能会损坏。当然,同时使用管道的不同端的进程没有损坏的风险。
3.3 Managers
Manager() 返回的管理器对象控制一个服务器进程,该进程保存 Python 对象并允许其他进程使用代理来操作它们。
Manager() 返回的管理器将支持List、dict、Namespace、Lock、RLock、Semaphore、BoundedSemaphore、Condition、Event、Barrier、Queue、Value 和 Array 类型。例如,
from multiprocessing import Process, Manager
def f(d, l,n):
d[n] = '1'
d['2'] = 2
d[0.25] = None
l.append(n)
print(l)
if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
l = manager.list(range(5))
p_list = []
for i in range(10):
p = Process(target=f, args=(d, l,i))
p.start()
p_list.append(p)
for res in p_list:
res.join()
print(d)
print(l)
四、进程同步
如果不使用锁,来自不同进程的输出,很容易混淆。
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
try:
print('hello world', i)
finally:
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
五、进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
from multiprocessing import Process,Pool
import time
def Foo(i):
time.sleep(2)
return i+100
def Bar(arg):
print('-->exec done:',arg)
pool = Pool(5)
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
#pool.apply(func=Foo, args=(i,))
print('end')
pool.close()
pool.join()
原文链接:https://zhuanlan.zhihu.com/p/498972487
标签:__,name,Python,print,Process,进程,multiprocessing From: https://www.cnblogs.com/sddai/p/17247380.html