首页 > 系统相关 >python-进程

python-进程

时间:2022-12-19 11:06:54浏览次数:43  
标签:__ end start python print time 进程 multiprocessing

序. multiprocessing
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

1. Process

创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

例1.1:创建函数并将其作为单个进程

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def worker(interval):
n = 5
while n > 0:
print("The time is {0}".format(time.ctime()))
time.sleep(interval)
n -= 1

if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print "p.pid:", p.pid
print "p.name:", p.name
print "p.is_alive:", p.is_alive()

View Code

​结果​

python-进程_子进程

python-进程_子进程_02

p.pid: 8736
p.name: Process-1
p.is_alive: True
The time is Tue Apr 21 20:55:12 2015
The time is Tue Apr 21 20:55:15 2015
The time is Tue Apr 21 20:55:18 2015
The time is Tue Apr 21 20:55:21 2015
The time is Tue Apr 21 20:55:24 2015

View Code

例1.2:创建函数并将其作为多个进程

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def worker_1(interval):
print "worker_1"
time.sleep(interval)
print "end worker_1"

def worker_2(interval):
print "worker_2"
time.sleep(interval)
print "end worker_2"

def worker_3(interval):
print "worker_3"
time.sleep(interval)
print "end worker_3"

if __name__ == "__main__":
p1 = multiprocessing.Process(target = worker_1, args = (2,))
p2 = multiprocessing.Process(target = worker_2, args = (3,))
p3 = multiprocessing.Process(target = worker_3, args = (4,))

p1.start()
p2.start()
p3.start()

print("The number of CPU is:" + str(multiprocessing.cpu_count()))
for p in multiprocessing.active_children():
print("child p.name:" + p.name + "\tp.id" + str(p.pid))
print "END!!!!!!!!!!!!!!!!!"

View Code

结果

python-进程_子进程

python-进程_子进程_02

The number of CPU is:4
child p.name:Process-3 p.id7992
child p.name:Process-2 p.id4204
child p.name:Process-1 p.id6380
END!!!!!!!!!!!!!!!!!
worker_1
worker_3
worker_2
end worker_1
end worker_2
end worker_3

View Code

例1.3:将进程定义为类

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

class ClockProcess(multiprocessing.Process):
def __init__(self, interval):
multiprocessing.Process.__init__(self)
self.interval = interval

def run(self):
n = 5
while n > 0:
print("the time is {0}".format(time.ctime()))
time.sleep(self.interval)
n -= 1

if __name__ == '__main__':
p = ClockProcess(3)
p.start()

View Code

:进程p调用start()时,自动调用run()

结果

python-进程_子进程

python-进程_子进程_02

the time is Tue Apr 21 20:31:30 2015
the time is Tue Apr 21 20:31:33 2015
the time is Tue Apr 21 20:31:36 2015
the time is Tue Apr 21 20:31:39 2015
the time is Tue Apr 21 20:31:42 2015

View Code

例1.4:daemon程序对比结果

#1.4-1 不加daemon属性

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.start()
print "end!"

View Code

python-进程_子进程

python-进程_子进程_02

end!
work start:Tue Apr 21 21:29:10 2015
work end:Tue Apr 21 21:29:13 2015

View Code

#1.4-2 加上daemon属性

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
print "end!"

View Code

结果

python-进程_子进程

python-进程_子进程_02

end!

View Code

:因子进程设置了daemon属性,主进程结束,它们就随着结束了。

#1.4-3 设置daemon执行完结束的方法

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def worker(interval):
print("work start:{0}".format(time.ctime()));
time.sleep(interval)
print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
p = multiprocessing.Process(target = worker, args = (3,))
p.daemon = True
p.start()
p.join()
print "end!"

View Code

结果

python-进程_子进程

python-进程_子进程_02

work start:Tue Apr 21 22:16:32 2015
work end:Tue Apr 21 22:16:35 2015
end!

View Code

2. Lock

当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import sys

def worker_with(lock, f):
with lock:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lockd acquired via with\n")
n -= 1
fs.close()

def worker_no_with(lock, f):
lock.acquire()
try:
fs = open(f, 'a+')
n = 10
while n > 1:
fs.write("Lock acquired directly\n")
n -= 1
fs.close()
finally:
lock.release()

if __name__ == "__main__":
lock = multiprocessing.Lock()
f = "file.txt"
w = multiprocessing.Process(target = worker_with, args=(lock, f))
nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
w.start()
nw.start()
print "end"

View Code

结果(输出文件)

python-进程_子进程

python-进程_子进程_02

Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lockd acquired via with
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly
Lock acquired directly

View Code

3. Semaphore

Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def worker(s, i):
s.acquire()
print(multiprocessing.current_process().name + "acquire");
time.sleep(i)
print(multiprocessing.current_process().name + "release\n");
s.release()

if __name__ == "__main__":
s = multiprocessing.Semaphore(2)
for i in range(5):
p = multiprocessing.Process(target = worker, args=(s, i*2))
p.start()

View Code

结果

python-进程_子进程

python-进程_子进程_02

Process-1acquire
Process-1release

Process-2acquire
Process-3acquire
Process-2release

Process-5acquire
Process-3release

Process-4acquire
Process-5release

Process-4release

View Code

4. Event

Event用来实现进程间同步通信。

python-进程_子进程

python-进程_子进程_02

import multiprocessing
import time

def wait_for_event(e):
print("wait_for_event: starting")
e.wait()
print("wairt_for_event: e.is_set()->" + str(e.is_set()))

def wait_for_event_timeout(e, t):
print("wait_for_event_timeout:starting")
e.wait(t)
print("wait_for_event_timeout:e.is_set->" + str(e.is_set()))

if __name__ == "__main__":
e = multiprocessing.Event()
w1 = multiprocessing.Process(name = "block",
target = wait_for_event,
args = (e,))

w2 = multiprocessing.Process(name = "non-block",
target = wait_for_event_timeout,
args = (e, 2))
w1.start()
w2.start()

time.sleep(3)

e.set()
print("main: event is set")

View Code

结果

python-进程_子进程

python-进程_子进程_02

wait_for_event: starting
wait_for_event_timeout:starting
wait_for_event_timeout:e.is_set->False
main: event is set
wairt_for_event: e.is_set()->True

View Code

5. Queue

Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。

 

get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:

python-进程_子进程

python-进程_子进程_02

1 import multiprocessing
2
3 def writer_proc(q):
4 try:
5 q.put(1, block = False)
6 except:
7 pass
8
9 def reader_proc(q):
10 try:
11 print q.get(block = False)
12 except:
13 pass
14
15 if __name__ == "__main__":
16 q = multiprocessing.Queue()
17 writer = multiprocessing.Process(target=writer_proc, args=(q,))
18 writer.start()
19
20 reader = multiprocessing.Process(target=reader_proc, args=(q,))
21 reader.start()
22
23 reader.join()
24 writer.join()

View Code

结果

1

6. Pipe

Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。

 

send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

python-进程_子进程

python-进程_子进程_02

1 import multiprocessing
2 import time
3
4 def proc1(pipe):
5 while True:
6 for i in xrange(10000):
7 print "send: %s" %(i)
8 pipe.send(i)
9 time.sleep(1)
10
11 def proc2(pipe):
12 while True:
13 print "proc2 rev:", pipe.recv()
14 time.sleep(1)
15
16 def proc3(pipe):
17 while True:
18 print "PROC3 rev:", pipe.recv()
19 time.sleep(1)
20
21 if __name__ == "__main__":
22 pipe = multiprocessing.Pipe()
23 p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
24 p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
25 #p3 = multiprocessing.Process(target=proc3, args=(pipe[1],))
26
27 p1.start()
28 p2.start()
29 #p3.start()
30
31 p1.join()
32 p2.join()
33 #p3.join()

View Code

结果

python-进程_进程池_41

7. Pool

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

例7.1:使用进程池

python-进程_子进程

python-进程_子进程_02

1 #coding: utf-8
2 import multiprocessing
3 import time
4
5 def func(msg):
6 print "msg:", msg
7 time.sleep(3)
8 print "end"
9
10 if __name__ == "__main__":
11 pool = multiprocessing.Pool(processes = 3)
12 for i in xrange(4):
13 msg = "hello %d" %(i)
14 pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
15
16 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
17 pool.close()
18 pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
19 print "Sub-process(es) done."

View Code

一次执行结果

python-进程_子进程

python-进程_子进程_02

1 mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0
2
3 msg: hello 1
4 msg: hello 2
5 end
6 msg: hello 3
7 end
8 end
9 end
10 Sub-process(es) done.

View Code

函数解释:

  • apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
  • close()    关闭pool,使其不在接受新的任务。
  • terminate()    结束工作进程,不在处理未完成的任务。
  • join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例7.2:使用进程池(阻塞)

python-进程_子进程

python-进程_子进程_02

1 #coding: utf-8
2 import multiprocessing
3 import time
4
5 def func(msg):
6 print "msg:", msg
7 time.sleep(3)
8 print "end"
9
10 if __name__ == "__main__":
11 pool = multiprocessing.Pool(processes = 3)
12 for i in xrange(4):
13 msg = "hello %d" %(i)
14 pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
15
16 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
17 pool.close()
18 pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
19 print "Sub-process(es) done."

View Code

一次执行的结果

python-进程_子进程

python-进程_子进程_02

1 msg: hello 0
2 end
3 msg: hello 1
4 end
5 msg: hello 2
6 end
7 msg: hello 3
8 end
9 Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
10 Sub-process(es) done.

View Code

例7.3:使用进程池,并关注结果

python-进程_子进程

python-进程_子进程_02

1 import multiprocessing
2 import time
3
4 def func(msg):
5 print "msg:", msg
6 time.sleep(3)
7 print "end"
8 return "done" + msg
9
10 if __name__ == "__main__":
11 pool = multiprocessing.Pool(processes=4)
12 result = []
13 for i in xrange(3):
14 msg = "hello %d" %(i)
15 result.append(pool.apply_async(func, (msg, )))
16 pool.close()
17 pool.join()
18 for res in result:
19 print ":::", res.get()
20 print "Sub-process(es) done."

View Code

一次执行结果

python-进程_子进程

python-进程_子进程_02

1 msg: hello 0
2 msg: hello 1
3 msg: hello 2
4 end
5 end
6 end
7 ::: donehello 0
8 ::: donehello 1
9 ::: donehello 2
10 Sub-process(es) done.

View Code

例7.4:使用多个进程池

python-进程_子进程

python-进程_子进程_02

1 #coding: utf-8
2 import multiprocessing
3 import os, time, random
4
5 def Lee():
6 print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
7 start = time.time()
8 time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
9 end = time.time()
10 print 'Task Lee, runs %0.2f seconds.' %(end - start)
11
12 def Marlon():
13 print "\nRun task Marlon-%s" %(os.getpid())
14 start = time.time()
15 time.sleep(random.random() * 40)
16 end=time.time()
17 print 'Task Marlon runs %0.2f seconds.' %(end - start)
18
19 def Allen():
20 print "\nRun task Allen-%s" %(os.getpid())
21 start = time.time()
22 time.sleep(random.random() * 30)
23 end = time.time()
24 print 'Task Allen runs %0.2f seconds.' %(end - start)
25
26 def Frank():
27 print "\nRun task Frank-%s" %(os.getpid())
28 start = time.time()
29 time.sleep(random.random() * 20)
30 end = time.time()
31 print 'Task Frank runs %0.2f seconds.' %(end - start)
32
33 if __name__=='__main__':
34 function_list= [Lee, Marlon, Allen, Frank]
35 print "parent process %s" %(os.getpid())
36
37 pool=multiprocessing.Pool(4)
38 for func in function_list:
39 pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中
40
41 print 'Waiting for all subprocesses done...'
42 pool.close()
43 pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
44 print 'All subprocesses done.'

View Code

一次执行结果

python-进程_子进程

python-进程_子进程_02

1 parent process 7704
2
3 Waiting for all subprocesses done...
4 Run task Lee-6948
5
6 Run task Marlon-2896
7
8 Run task Allen-7304
9
10 Run task Frank-3052
11 Task Lee, runs 1.59 seconds.
12 Task Marlon runs 8.48 seconds.
13 Task Frank runs 15.68 seconds.
14 Task Allen runs 18.08 seconds.
15 All subprocesses done.

View Code

标签:__,end,start,python,print,time,进程,multiprocessing
From: https://blog.51cto.com/muzinan110/5951506

相关文章

  • java.exe进程来源排查录
     解决后的一个小结:此处是一个tomcat端口,这种情况下,可以先在浏览器访问下看看效果,就可以快速定位 又发现一个简单的办法:  下面的定位过程,适用于各种场合  无意中发现有......
  • golang---进程、线程、goroutine
    创建进程os包及其子包os/exec提供了创建进程的方法。一般的,应该优先使用os/exec包。因为os/exec包依赖os包中关键创建进程的API,为了便于理解,我们先探讨os包中和......
  • python多线程实现爬虫任务
    python语言对于网络爬虫来说是非常重要的,大多数互联网公司都热衷于python语言编写爬虫。那么如果大批量做爬虫工作,如何才能快速的爬取数据,这就需要多线程多任务操作才能快速......
  • Python 使用filter()去除list的空值
    Python使用filter()去除list的空值d=['','剧情','喜剧','恐怖','','伦理','']d_dropna=list(filter(None,d))#去除列表空值,非常简单好用'''注意:空字符串......
  • Python面向对象
     类1.面向对象技术简介类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。方法:类中定义的函数......
  • Python数据分析5大经典练手项目之项目一(餐厅订单数据分析)【待完结】
    环境:shell工具:gitbash(自行下载),对比cmd:几乎接近linux命令jupyterlab是jupyternotebook升级版实操:桌面右键点击gitbashhere进入mingw64界面输入jupyterlab进入......
  • [编程基础] Python字符串替换笔记
    Python字符串替换笔记Python字符串替换笔记主要展示了如何在Python中替换字符串。Python中有以下几种替换字符串的方法,本文主要介绍前三种。replace方法(常用)translate......
  • [编程基础] Python随机数生成模块总结
    date:2020-06-2421:05:32+0800tags:-编程基础-PythonPython随机数生成模块教程演示如何在Python中生成伪随机数。1介绍1.1随机数字生成器随机数生成器(......
  • python---基础部分---六种标准数据类型
    注意:    基本数据类型:python中一切都是对象(class)一、六种标准数据类型:  一、NUmber类型:       整形,浮点型,复数类型,布尔型,所有数据类型都是以类形......
  • [编程基础] Python中args和kwargs参数的使用
    date:2020-10-1421:04:20+0800tags:-编程基础-Python本文主要介绍Python中*args和**kwargs参数的使用1使用在Python中,定义函数时可以使用两个特殊符号,以......