首页 > 数据库 >KubeSphere 最佳实战:K8s 构建高可用、高性能 Redis 集群实战指南

KubeSphere 最佳实战:K8s 构建高可用、高性能 Redis 集群实战指南

时间:2024-11-20 16:18:37浏览次数:1  
标签:实战 6379 Redis KubeSphere 10.233 redis cluster slots

首发:运维有术

本指南将逐步引导您完成以下关键任务:

  1. 安装 Redis:使用 StatefulSet 部署 Redis。
  2. 自动或手动配置 Redis 集群:使用命令行工具初始化 Redis 集群。
  3. Redis 性能测试:使用 Redis 自带的 Benchmark 工具进行性能测试。
  4. Redis 图形化管理:安装并配置 RedisInsight。

通过本指南,您将掌握在 K8s 上部署和管理 Redis 集群的必备技能。让我们开始这场 Redis 集群部署之旅。

实战服务器配置(架构1:1复刻小规模生产环境,配置不同)

主机名 IP CPU 内存 系统盘 数据盘 用途
ksp-registry 192.168.9.90 4 8 40 200 Harbor 镜像仓库
ksp-control-1 192.168.9.91 4 8 40 100 KubeSphere/k8s-control-plane
ksp-control-2 192.168.9.92 4 8 40 100 KubeSphere/k8s-control-plane
ksp-control-3 192.168.9.93 4 8 40 100 KubeSphere/k8s-control-plane
ksp-worker-1 192.168.9.94 8 16 40 100 k8s-worker/CI
ksp-worker-2 192.168.9.95 8 16 40 100 k8s-worker
ksp-worker-3 192.168.9.96 8 16 40 100 k8s-worker
ksp-storage-1 192.168.9.97 4 8 40 400+ ElasticSearch/Longhorn/Ceph/NFS
ksp-storage-2 192.168.9.98 4 8 40 300+ ElasticSearch/Longhorn/Ceph
ksp-storage-3 192.168.9.99 4 8 40 300+ ElasticSearch/Longhorn/Ceph
ksp-gpu-worker-1 192.168.9.101 4 16 40 100 k8s-worker(GPU NVIDIA Tesla M40 24G)
ksp-gpu-worker-2 192.168.9.102 4 16 40 100 k8s-worker(GPU NVIDIA Tesla P100 16G)
ksp-gateway-1 192.168.9.103 2 4 40 自建应用服务代理网关/VIP:192.168.9.100
ksp-gateway-2 192.168.9.104 2 4 40 自建应用服务代理网关/VIP:192.168.9.100
ksp-mid 192.168.9.105 4 8 40 100 部署在 k8s 集群之外的服务节点(Gitlab 等)
合计 15 68 152 600 2100+

实战环境涉及软件版本信息

  • 操作系统:openEuler 22.03 LTS SP3 x86_64
  • KubeSphere:v3.4.1
  • Kubernetes:v1.28.8
  • KubeKey: v3.1.1
  • Redis: 7.2.6
  • RedisInsight:2.60

1. 部署方案规划

1.1 部署架构图

1.2 准备持久化存储

本实战环境使用 NFS 作为 K8s 集群的持久化存储,新集群可以参考探索 Kubernetes 持久化存储之 NFS 终极实战指南 部署 NFS 存储。

1.3 前提说明

Redis 集群所有资源部署在命名空间 opsxlab内。

2. 部署 Redis 服务

2.1 创建 ConfigMap

  1. 创建 Redis 配置文件

请使用 vi 编辑器,创建资源清单文件 redis-cluster-cm.yaml,并输入以下内容:

apiVersion: v1
kind: ConfigMap
metadata:
  name: redis-cluster-config
data:
  redis-config: |
    appendonly yes
    protected-mode no
    dir /data
    port 6379
    cluster-enabled yes
    cluster-config-file /data/nodes.conf
    cluster-node-timeout 5000
    masterauth PleaseChangeMe2024
    requirepass PleaseChangeMe2024

说明: 配置文件仅启用了密码认证,未做优化,生产环境请根据需要调整。

  1. 创建资源

执行下面的命令,创建 ConfigMap 资源。

kubectl apply -f redis-cluster-cm.yaml -n opsxlab
  1. 验证资源

执行下面的命令,查看 ConfigMap 创建结果。

$ kubectl get cm -n opsxlab
NAME                   DATA   AGE
kube-root-ca.crt       1      100d
redis-cluster-config   1      115s

2.2 创建 Redis

本文使用 StatefulSet 部署 Redis 服务,需要创建 StatefulSet 和 HeadLess 两种资源。

  1. 创建资源清单

请使用 vi 编辑器,创建资源清单文件 redis-cluster-sts.yaml,并输入以下内容:

---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: redis-cluster
  labels:
    app.kubernetes.io/name: redis-cluster
spec:
  serviceName: redis-headless
  replicas: 6
  selector:
    matchLabels:
      app.kubernetes.io/name: redis-cluster
  template:
    metadata:
      labels:
        app.kubernetes.io/name: redis-cluster
    spec:
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 100
            podAffinityTerm:
              labelSelector:
                matchExpressions:
                - key: app.kubernetes.io/name
                  operator: In
                  values:
                  - redis-cluster
              topologyKey: kubernetes.io/hostname
      containers:
        - name: redis
          image: 'redis:7.2.6'
          command:
            - "redis-server"
          args:
            - "/etc/redis/redis.conf"
            - "--protected-mode"
            - "no"
            - "--cluster-announce-ip"
            - "$(POD_IP)"
          env:
            - name: POD_IP
              valueFrom:
                fieldRef:
                  fieldPath: status.podIP
          ports:
            - name: redis-6379
              containerPort: 6379
              protocol: TCP
          volumeMounts:
            - name: config
              mountPath: /etc/redis
            - name: redis-cluster-data
              mountPath: /data
          resources:
            limits:
              cpu: '2'
              memory: 4Gi
            requests:
              cpu: 50m
              memory: 500Mi
      volumes:
        - name: config
          configMap:
            name: redis-cluster-config
            items:
              - key: redis-config
                path: redis.conf
  volumeClaimTemplates:
    - metadata:
        name: redis-cluster-data
      spec:
        accessModes: [ "ReadWriteOnce" ]
        storageClassName: "nfs-sc"
        resources:
          requests:
            storage: 5Gi

---
apiVersion: v1
kind: Service
metadata:
  name: redis-headless
  labels:
    app.kubernetes.io/name: redis-cluster
spec:
  ports:
    - name: redis-6379
      protocol: TCP
      port: 6379
      targetPort: 6379
  selector:
    app.kubernetes.io/name: redis-cluster
  clusterIP: None
  type: ClusterIP

注意: POD_IP 是重点,如果不配置会导致线上的 POD 重启换 IP 后,集群状态无法自动同步。

  1. 创建资源

执行下面的命令,创建资源。

kubectl apply -f redis-cluster-sts.yaml -n opsxlab
  1. 验证资源

执行下面的命令,查看 StatefulSet、Pod、Service 创建结果。

$ kubectl get sts,pod,svc -n opsxlab
NAME                             READY   AGE
statefulset.apps/redis-cluster   6/6     72s

NAME                  READY   STATUS    RESTARTS   AGE
pod/redis-cluster-0   1/1     Running   0          72s
pod/redis-cluster-1   1/1     Running   0          63s
pod/redis-cluster-2   1/1     Running   0          54s
pod/redis-cluster-3   1/1     Running   0          43s
pod/redis-cluster-4   1/1     Running   0          40s
pod/redis-cluster-5   1/1     Running   0          38s

NAME                     TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
service/redis-headless   ClusterIP   None         <none>        6379/TCP   36s

2.3 创建 k8s 集群外部访问服务

我们采用 NodePort 方式在 Kubernetes 集群外发布 Redis 服务,指定的端口为 31379

请使用 vi 编辑器,创建资源清单文件 redis-cluster-svc-external.yaml,并输入以下内容:

kind: Service
apiVersion: v1
metadata:
  name: redis-cluster-external
  labels:
    app: redis-cluster-external
spec:
  ports:
    - protocol: TCP
      port: 6379
      targetPort: 6379
      nodePort: 31379
  selector:
    app.kubernetes.io/name: redis-cluster
  type: NodePort
  1. 创建资源

执行下面的命令,创建 Service 资源。

kubectl apply -f redis-cluster-svc-external.yaml -n opsxlab
  1. 验证资源

执行下面的命令,查看 Service 创建结果。

$ kubectl get svc -o wide -n opsxlab
NAME                     TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE     SELECTOR
redis-cluster-external   NodePort    10.233.22.96   <none>        6379:31379/TCP   14s     app.kubernetes.io/name=redis-cluster
redis-headless           ClusterIP   None           <none>        6379/TCP         2m57s   app.kubernetes.io/name=redis-cluster

3. 创建 Redis 集群

Redis POD 创建完成后,不会自动创建 Redis 集群,需要手工执行集群初始化的命令,有自动创建和手工创建两种方式,二选一,建议选择自动

3.1 自动创建 Redis 集群

执行下面的命令,自动创建 3 个 master 和 3 个 slave 的集群,中间需要输入一次 yes。

  • 执行命令
kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster create --cluster-replicas 1 $(kubectl get pods -n opsxlab -l app.kubernetes.io/name=redis-cluster -o jsonpath='{range.items[*]}{.status.podIP}:6379 {end}')
  • 正确执行后,输出结果如下 :
$ kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster create --cluster-replicas 1 $(kubectl get pods -n opsxlab -l app.kubernetes.io/name=redis-cluster -o jsonpath='{range.items[*]}{.status.podIP}:6379 {end}')
Warning: Using a password with '-a' or '-u' option on the command line interface may not be safe.
>>> Performing hash slots allocation on 6 nodes...
Master[0] -> Slots 0 - 5460
Master[1] -> Slots 5461 - 10922
Master[2] -> Slots 10923 - 16383
Adding replica 10.233.96.17:6379 to 10.233.94.214:6379
Adding replica 10.233.68.250:6379 to 10.233.96.22:6379
Adding replica 10.233.94.231:6379 to 10.233.68.251:6379
M: da376da9577b14e4100c87d3acc53aebf57358b7 10.233.94.214:6379
   slots:[0-5460] (5461 slots) master
M: a3094b24d44430920f9250d4a6d8ce2953852f13 10.233.96.22:6379
   slots:[5461-10922] (5462 slots) master
M: 185fd2d0bbb0cd9c01fa82fa496a1082f16b9ce0 10.233.68.251:6379
   slots:[10923-16383] (5461 slots) master
S: 9ce470afe3490662fb1670ba16fad2e87e02b191 10.233.94.231:6379
   replicates 185fd2d0bbb0cd9c01fa82fa496a1082f16b9ce0
S: b57fb0717160eab39ccd67f6705a592bd5482429 10.233.96.17:6379
   replicates da376da9577b14e4100c87d3acc53aebf57358b7
S: bed82c46554a0ebf638117437d884c01adf1003f 10.233.68.250:6379
   replicates a3094b24d44430920f9250d4a6d8ce2953852f13
Can I set the above configuration? (type 'yes' to accept): yes
>>> Nodes configuration updated
>>> Assign a different config epoch to each node
>>> Sending CLUSTER MEET messages to join the cluster
Waiting for the cluster to join
...
>>> Performing Cluster Check (using node 10.233.94.214:6379)
M: da376da9577b14e4100c87d3acc53aebf57358b7 10.233.94.214:6379
   slots:[0-5460] (5461 slots) master
   1 additional replica(s)
S: 9ce470afe3490662fb1670ba16fad2e87e02b191 10.233.94.231:6379
   slots: (0 slots) slave
   replicates 185fd2d0bbb0cd9c01fa82fa496a1082f16b9ce0
S: b57fb0717160eab39ccd67f6705a592bd5482429 10.233.96.17:6379
   slots: (0 slots) slave
   replicates da376da9577b14e4100c87d3acc53aebf57358b7
M: a3094b24d44430920f9250d4a6d8ce2953852f13 10.233.96.22:6379
   slots:[5461-10922] (5462 slots) master
   1 additional replica(s)
S: bed82c46554a0ebf638117437d884c01adf1003f 10.233.68.250:6379
   slots: (0 slots) slave
   replicates a3094b24d44430920f9250d4a6d8ce2953852f13
M: 185fd2d0bbb0cd9c01fa82fa496a1082f16b9ce0 10.233.68.251:6379
   slots:[10923-16383] (5461 slots) master
   1 additional replica(s)
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.

3.2 手动创建 Redis 集群

手动配置 3 个 Master 和 3 个 Slave 的集群(此步骤只为了记录手动配置集群的过程,实际环境建议用自动创建的方式)。

一共创建了 6 个 Redis pod,集群主-> 从配置的规则为 0->3,1->4,2->5。

由于命令太长,配置过程中,没有采用自动获取 IP 的方式,使用手工查询 pod IP 并进行相关配置。

  • 查询 Redis pod 分配的 IP
$ kubectl get pods -n opsxlab -o wide | grep redis
redis-cluster-0   1/1     Running   0          18s   10.233.94.233   ksp-worker-1   <none>           <none>
redis-cluster-1   1/1     Running   0          16s   10.233.96.29    ksp-worker-3   <none>           <none>
redis-cluster-2   1/1     Running   0          13s   10.233.68.255   ksp-worker-2   <none>           <none>
redis-cluster-3   1/1     Running   0          11s   10.233.94.209   ksp-worker-1   <none>           <none>
redis-cluster-4   1/1     Running   0          8s    10.233.96.23    ksp-worker-3   <none>           <none>
redis-cluster-5   1/1     Running   0          5s    10.233.68.4     ksp-worker-2   <none>           <none>
  • 创建 3 个 Master 节点的集群
# 下面的命令中,三个 IP 地址分别为 redis-cluster-0 redis-cluster-1 redis-cluster-2 对应的IP, 中间需要输入一次yes

$ kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster create 10.233.94.233:6379 10.233.96.29:6379 10.233.68.255:6379

Warning: Using a password with '-a' or '-u' option on the command line interface may not be safe.
>>> Performing hash slots allocation on 3 nodes...
Master[0] -> Slots 0 - 5460
Master[1] -> Slots 5461 - 10922
Master[2] -> Slots 10923 - 16383
M: 1f4df418ac310b6d14a7920a105e060cda58275a 10.233.94.233:6379
   slots:[0-5460] (5461 slots) master
M: bd1a8e265fa78e93b456b9e59cbefc893f0d2ab1 10.233.96.29:6379
   slots:[5461-10922] (5462 slots) master
M: 149ffd5df2cae9cfbc55e3aff69c9575134ce162 10.233.68.255:6379
   slots:[10923-16383] (5461 slots) master
Can I set the above configuration? (type 'yes' to accept): yes
>>> Nodes configuration updated
>>> Assign a different config epoch to each node
>>> Sending CLUSTER MEET messages to join the cluster
Waiting for the cluster to join
.
>>> Performing Cluster Check (using node 10.233.94.233:6379)
M: 1f4df418ac310b6d14a7920a105e060cda58275a 10.233.94.233:6379
   slots:[0-5460] (5461 slots) master
M: bd1a8e265fa78e93b456b9e59cbefc893f0d2ab1 10.233.96.29:6379
   slots:[5461-10922] (5462 slots) master
M: 149ffd5df2cae9cfbc55e3aff69c9575134ce162 10.233.68.255:6379
   slots:[10923-16383] (5461 slots) master
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.
  • 为每个 Master 添加 Slave 节点(共三组
# 第一组 redis0 -> redis3
kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster add-node 10.233.94.209:6379 10.233.94.233:6379 --cluster-slave --cluster-master-id 1f4df418ac310b6d14a7920a105e060cda58275a

# 参数说明
# 10.233.94.233:6379 任意一个 master 节点的 ip 地址,一般用 redis-cluster-0 的 IP 地址
# 10.233.94.209:6379 添加到某个 Master 的 Slave 节点的 IP 地址
# --cluster-master-id 添加 Slave 对应 Master 的 ID,如果不指定则随机分配到任意一个主节点
  • 正确执行后,输出结果如下 :(以第一组 0->3 为例
$ kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster add-node 10.233.94.209:6379 10.233.94.233:6379 --cluster-slave --cluster-master-id 1f4df418ac310b6d14a7920a105e060cda58275a

Warning: Using a password with '-a' or '-u' option on the command line interface may not be safe.
>>> Adding node 10.233.94.209:6379 to cluster 10.233.94.233:6379
>>> Performing Cluster Check (using node 10.233.94.233:6379)
M: 1f4df418ac310b6d14a7920a105e060cda58275a 10.233.94.233:6379
   slots:[0-5460] (5461 slots) master
M: bd1a8e265fa78e93b456b9e59cbefc893f0d2ab1 10.233.96.29:6379
   slots:[5461-10922] (5462 slots) master
M: 149ffd5df2cae9cfbc55e3aff69c9575134ce162 10.233.68.255:6379
   slots:[10923-16383] (5461 slots) master
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.
>>> Send CLUSTER MEET to node 10.233.94.209:6379 to make it join the cluster.
Waiting for the cluster to join

>>> Configure node as replica of 10.233.94.233:6379.
[OK] New node added correctly.
  • 依次执行另外两组的配置(结果略)
# 第二组 redis1 -> redis4
kubectl exec -it -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster add-node 10.233.96.23:6379 10.233.94.233:6379 --cluster-slave --cluster-master-id bd1a8e265fa78e93b456b9e59cbefc893f0d2ab1

# 第三组 redis2 -> redis5
kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster add-node 10.233.68.4:6379 10.233.94.233:6379 --cluster-slave --cluster-master-id 149ffd5df2cae9cfbc55e3aff69c9575134ce162

3.3 验证集群状态

  • 执行命令
kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster check $(kubectl get pods -n opsxlab -l app.kubernetes.io/name=redis-cluster -o jsonpath='{range.items[0]}{.status.podIP}:6379{end}')
  • 正确执行后,输出结果如下 :
$ kubectl exec -it redis-cluster-0 -n opsxlab -- redis-cli -a PleaseChangeMe2024 --cluster check $(kubectl get pods -n opsxlab -l app.kubernetes.io/name=redis-cluster -o jsonpath='{range.items[0]}{.status.podIP}:6379{end}')

Warning: Using a password with '-a' or '-u' option on the command line interface may not be safe.
10.233.94.233:6379 (1f4df418...) -> 0 keys | 5461 slots | 1 slaves.
10.233.68.255:6379 (149ffd5d...) -> 0 keys | 5461 slots | 1 slaves.
10.233.96.29:6379 (bd1a8e26...) -> 0 keys | 5462 slots | 1 slaves.
[OK] 0 keys in 3 masters.
0.00 keys per slot on average.
>>> Performing Cluster Check (using node 10.233.94.233:6379)
M: 1f4df418ac310b6d14a7920a105e060cda58275a 10.233.94.233:6379
   slots:[0-5460] (5461 slots) master
   1 additional replica(s)
S: 577675e83c2267d625bf7b408658bfa8b5690feb 10.233.96.23:6379
   slots: (0 slots) slave
   replicates bd1a8e265fa78e93b456b9e59cbefc893f0d2ab1
M: 149ffd5df2cae9cfbc55e3aff69c9575134ce162 10.233.68.255:6379
   slots:[10923-16383] (5461 slots) master
   1 additional replica(s)
S: 288bd84283237dcfaa7f27f1e1d0148488649d97 10.233.68.4:6379
   slots: (0 slots) slave
   replicates 149ffd5df2cae9cfbc55e3aff69c9575134ce162
M: bd1a8e265fa78e93b456b9e59cbefc893f0d2ab1 10.233.96.29:6379
   slots:[5461-10922] (5462 slots) master
   1 additional replica(s)
S: a5fc4eeebb4c345d783f7b9d2b8695442e4cdf07 10.233.94.209:6379
   slots: (0 slots) slave
   replicates 1f4df418ac310b6d14a7920a105e060cda58275a
[OK] All nodes agree about slots configuration.
>>> Check for open slots...
>>> Check slots coverage...
[OK] All 16384 slots covered.

4. 集群功能测试

4.1 压力测试

使用 Redis 自带的压力测试工具,测试 Redis 集群是否可用,并简单测试性能。

测试 set 场景:

使用 set 命令,发送100000次请求,每个请求包含一个键值对,其中键是随机生成的,值的大小是100字节,同时有20个客户端并发执行。

$ kubectl exec -it redis-cluster-0 -n opsxlab -- redis-benchmark -h 192.168.9.91 -p 31379 -a PleaseChangeMe2024 -t set -n 100000 -c 20 -d 100 --cluster
Cluster has 3 master nodes:

Master 0: dd42f52834303001a9e4c3036164ab0a11d4f3e1 10.233.94.243:6379
Master 1: e263c18891f96b6af4a4a7d842d8099355ec4654 10.233.96.41:6379
Master 2: 59944b8a38ecf0da5c1940676c9f7ac7fd9a926c 10.233.68.3:6379

====== SET ======
  100000 requests completed in 1.50 seconds
  20 parallel clients
  100 bytes payload
  keep alive: 1
  cluster mode: yes (3 masters)
  node [0] configuration:
    save: 3600 1 300 100 60 10000
    appendonly: yes
  node [1] configuration:
    save: 3600 1 300 100 60 10000
    appendonly: yes
  node [2] configuration:
    save: 3600 1 300 100 60 10000
    appendonly: yes
  multi-thread: yes
  threads: 3

Latency by percentile distribution:
0.000% <= 0.039 milliseconds (cumulative count 32)
50.000% <= 0.183 milliseconds (cumulative count 50034)
75.000% <= 0.311 milliseconds (cumulative count 76214)
87.500% <= 0.399 milliseconds (cumulative count 87628)
93.750% <= 0.495 milliseconds (cumulative count 94027)
96.875% <= 0.591 milliseconds (cumulative count 96978)
98.438% <= 0.735 milliseconds (cumulative count 98440)
99.219% <= 1.071 milliseconds (cumulative count 99219)
99.609% <= 1.575 milliseconds (cumulative count 99610)
99.805% <= 2.375 milliseconds (cumulative count 99805)
99.902% <= 3.311 milliseconds (cumulative count 99903)
99.951% <= 5.527 milliseconds (cumulative count 99952)
99.976% <= 9.247 milliseconds (cumulative count 99976)
99.988% <= 11.071 milliseconds (cumulative count 99988)
99.994% <= 22.751 milliseconds (cumulative count 99994)
99.997% <= 23.039 milliseconds (cumulative count 99997)
99.998% <= 23.119 milliseconds (cumulative count 99999)
99.999% <= 23.231 milliseconds (cumulative count 100000)
100.000% <= 23.231 milliseconds (cumulative count 100000)

Cumulative distribution of latencies:
17.186% <= 0.103 milliseconds (cumulative count 17186)
55.606% <= 0.207 milliseconds (cumulative count 55606)
74.870% <= 0.303 milliseconds (cumulative count 74870)
88.358% <= 0.407 milliseconds (cumulative count 88358)
94.386% <= 0.503 milliseconds (cumulative count 94386)
97.230% <= 0.607 milliseconds (cumulative count 97230)
98.247% <= 0.703 milliseconds (cumulative count 98247)
98.745% <= 0.807 milliseconds (cumulative count 98745)
98.965% <= 0.903 milliseconds (cumulative count 98965)
99.148% <= 1.007 milliseconds (cumulative count 99148)
99.254% <= 1.103 milliseconds (cumulative count 99254)
99.358% <= 1.207 milliseconds (cumulative count 99358)
99.465% <= 1.303 milliseconds (cumulative count 99465)
99.532% <= 1.407 milliseconds (cumulative count 99532)
99.576% <= 1.503 milliseconds (cumulative count 99576)
99.619% <= 1.607 milliseconds (cumulative count 99619)
99.648% <= 1.703 milliseconds (cumulative count 99648)
99.673% <= 1.807 milliseconds (cumulative count 99673)
99.690% <= 1.903 milliseconds (cumulative count 99690)
99.734% <= 2.007 milliseconds (cumulative count 99734)
99.755% <= 2.103 milliseconds (cumulative count 99755)
99.883% <= 3.103 milliseconds (cumulative count 99883)
99.939% <= 4.103 milliseconds (cumulative count 99939)
99.945% <= 5.103 milliseconds (cumulative count 99945)
99.959% <= 6.103 milliseconds (cumulative count 99959)
99.966% <= 7.103 milliseconds (cumulative count 99966)
99.974% <= 9.103 milliseconds (cumulative count 99974)
99.986% <= 10.103 milliseconds (cumulative count 99986)
99.989% <= 11.103 milliseconds (cumulative count 99989)
99.993% <= 12.103 milliseconds (cumulative count 99993)
99.998% <= 23.103 milliseconds (cumulative count 99998)
100.000% <= 24.111 milliseconds (cumulative count 100000)

Summary:
  throughput summary: 66533.60 requests per second
  latency summary (msec):
          avg       min       p50       p95       p99       max
        0.243     0.032     0.183     0.519     0.927    23.231

其它场景(结果略)

  • ping
kubectl exec -it redis-cluster-0 -n opsxlab -- redis-benchmark -h 192.168.9.91 -p 31379 -a PleaseChangeMe2024 -t ping -n 100000 -c 20 -d 100 --cluster
  • get
kubectl exec -it redis-cluster-0 -n opsxlab -- redis-benchmark -h 192.168.9.91 -p 31379 -a PleaseChangeMe2024 -t get -n 100000 -c 20 -d 100 --cluster

4.2 故障切换测试

测试前查看集群状态(以一组 Master/Slave 为例)

......
M: e6b176bc1d53bac7da548e33d5c61853ecbe1890 10.233.96.51:6379
   slots:[5461-10922] (5462 slots) master
   1 additional replica(s)
S: e7f5d965fc592373b01b0a0b599f00b8883cdf7d 10.233.68.1:6379
   slots: (0 slots) slave
   replicates e6b176bc1d53bac7da548e33d5c61853ecbe1890
  1. 测试场景1: 手动删除一个 Master 的 Slave,观察 Slave Pod 是否会自动重建并加入原有 Master。

删除 Slave 后,查看集群状态。

......
M: e6b176bc1d53bac7da548e33d5c61853ecbe1890 10.233.96.51:6379
   slots:[5461-10922] (5462 slots) master
   1 additional replica(s)
S: e7f5d965fc592373b01b0a0b599f00b8883cdf7d 10.233.68.8:6379
   slots: (0 slots) slave
   replicates e6b176bc1d53bac7da548e33d5c61853ecbe1890

结果: 原有 Slave IP 为 10.233.68.1,删除后自动重建,IP 变更为 10.233.68.8,并自动加入原有的 Master。

  1. 测试场景2: 手动删除 Master ,观察 Master Pod 是否会自动重建并重新变成 Master。

删除 Master 后,查看集群状态。

......
M: e6b176bc1d53bac7da548e33d5c61853ecbe1890 10.233.96.68:6379
   slots:[5461-10922] (5462 slots) master
   1 additional replica(s)
S: e7f5d965fc592373b01b0a0b599f00b8883cdf7d 10.233.68.8:6379
   slots: (0 slots) slave
   replicates e6b176bc1d53bac7da548e33d5c61853ecbe1890

结果: 原有 Master IP 为 10.233.96.51,删除后自动重建, IP 变更为 10.233.96.68,并重新变成 Master

以上测试内容,仅是简单的故障切换测试,生产环境请增加更多的测试场景。

5. 安装管理客户端

大部分开发、运维人员还是喜欢图形化的 Redis 管理工具,所以介绍一下 Redis 官方提供的图形化工具 RedisInsight。

由于 RedisInsight 默认并不提供登录验证功能,因此,在系统安全要求比较高的环境会有安全风险,请慎用!个人建议生产环境使用命令行工具

5.1 编辑资源清单

  1. 创建资源清单

请使用 vi 编辑器,创建资源清单文件 redisinsight-deploy.yaml,并输入以下内容:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: redisinsight
  labels:
    app.kubernetes.io/name: redisinsight
spec:
  replicas: 1
  selector:
    matchLabels:
      app.kubernetes.io/name: redisinsight
  template:
    metadata:
      labels:
        app.kubernetes.io/name: redisinsight
    spec:
      containers:
        - name: redisinsight
          image: registry.opsxlab.cn:8443/redis/redisinsight:2.60
          ports:
            - name: redisinsight
              containerPort: 5540
              protocol: TCP
          resources:
            limits:
              cpu: '2'
              memory: 4Gi
            requests:
              cpu: 100m
              memory: 500Mi
  1. 创建外部访问服务

我们采用 NodePort 方式在 K8s 集群中对外发布 RedisInsight 服务,指定的端口为 31380

请使用 vi 编辑器,创建资源清单文件 redisinsight-svc-external.yaml,并输入以下内容:

kind: Service
apiVersion: v1
metadata:
  name: redisinsight-external
  labels:
    app: redisinsight-external
spec:
  ports:
    - name: redisinsight
      protocol: TCP
      port: 5540
      targetPort: 5540
      nodePort: 31380
  selector:
    app.kubernetes.io/name: redisinsight
  type: NodePort

5.2 部署 RedisInsight

  1. 创建资源

执行下面的命令,创建 RedisInsight 资源。

kubectl apply -f redisinsight-deploy.yaml -n opsxlab
kubectl apply -f redisinsight-svc-external.yaml -n opsxlab
  1. 验证资源

执行下面的命令,查看 Deployment、Pod、Service 创建结果。

$ kubectl get deploy,pod,svc -n opsxlab

5.3 控制台初始化

打开 RedisInsight 控制台,http://192.168.9.91:31380

进入默认配置页面,只勾选最后一个按钮,点击 Submit

添加 Redis 数据库: 点击「Add Redis database」。

选择「Add Database Manually」,按提示填写信息。

  • Host: 填写 K8s 集群任意节点IP,这里使用 Control-1 节点的 IP

  • Port: Redis 服务对应的 Nodeport 端口

  • Database Alias: 随便写,就是一个标识

  • Password: 连接 Redis 的密码

点击「Test Connection」,验证 Redis 是否可以连接。确认无误后,点击「Add Redis Database」。

5.4 控制台概览

下面用几张图简单展示一下 RedisInsight v2.60 版本管理控制台的功能,总体感觉管理功能比 V1 版本少了很多。

在 Redis Databases 列表页,点击新添加的 Redis 数据库,进入 Redis 管理页面。

  • 概览

  • Workbench(可以执行 Redis 管理命令)

  • Analytics

  • Pub-Sub

更多管理功能请自行摸索。

免责声明:

  • 笔者水平有限,尽管经过多次验证和检查,尽力确保内容的准确性,但仍可能存在疏漏之处。敬请业界专家大佬不吝指教。
  • 本文所述内容仅通过实战环境验证测试,读者可学习、借鉴,但严禁直接用于生产环境由此引发的任何问题,作者概不负责

近期活动推荐

标签:实战,6379,Redis,KubeSphere,10.233,redis,cluster,slots
From: https://www.cnblogs.com/kubesphere/p/18558654

相关文章

  • Redis的特性
    Redis的基本特性1.速度快(1)redis的所有数据都是存储在内存中的,这是redis速度快的主要原因。(2)redis使用C语言来实现的,C语言实现的程序和系统更接近,因此速度比较快。(3)redis使用单线程,预防了使用多线程产生的竞争问题。2.基于键值对的数据结构服务器redis中的键值对的val......
  • OpenCV三大经典项目实战:车辆检测、人脸识别、图像拼接与文字识别
    OpenCV三大经典项目实战:车辆检测、人脸识别、图像拼接与文字识别OpenCV(OpenSourceComputerVisionLibrary)作为计算机视觉领域的核心库之一,提供了丰富的功能和高效的算法,广泛应用于车辆检测、人脸识别、图像拼接和文字识别等多个领域。本文将详细介绍如何使用OpenCV进行这三大......
  • TensorFlow + CNN 实战 AI 图像处理:计算机视觉 + 落地应用
    TensorFlow+CNN实战AI图像处理:计算机视觉+落地应用一、引言随着人工智能技术的飞速发展,计算机视觉领域取得了令人瞩目的成就,在诸多行业中都展现出了巨大的应用潜力。而卷积神经网络(ConvolutionalNeuralNetwork,CNN)作为计算机视觉的核心技术之一,结合强大的深度学习框架T......
  • 29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型
    29套AI全栈大模型项目实战:探索人工智能视频课程中的多模态大模型随着人工智能技术的飞速发展,多模态大模型已成为当前研究的热点。这类模型能够同时处理和理解来自多种模态的信息,如文本、图像、音频和视频等,从而在复杂场景中展现出更强的智能。为了帮助广大开发者掌握这一前沿技术......
  • 零基础 AI 入门实战(深度学习 + Pytorch)
    零基础AI入门实战(深度学习+Pytorch)一、引言在当今这个科技飞速发展的时代,人工智能(AI)已经渗透到了我们生活和工作的方方面面。深度学习作为AI领域中的强大技术,更是展现出了巨大的应用潜力。而Pytorch作为一款广受欢迎的深度学习框架,为我们实现各种AI应用提供了便捷的工......
  • 【Redis集群实战】Redis 以及 Redis Sentinel 的 Docker部署
    Redis基本说明这里我是用的是docker。既然使用docker那么就需要配置两个组件一个Redis一个RedisSentinel我们可以使用docker-compose来启动一组docker安装docker-compose下载docker-compose安装包这里面直接从github下载。并且放在了/usr/local/bin/docker-c......
  • AI大模型系统实战:挑战与应用多领域,人工智能大模型的实际应用场景
    AI大模型系统实战:挑战与应用多领域随着人工智能技术的飞速发展,AI大模型系统已成为技术革新的重要驱动力。这些大型预训练模型,如GPT、BERT等,通过大规模无监督学习积累了丰富的知识,并在自然语言处理、图像识别、智能推荐等多个领域展现出巨大的应用潜力。本文将深入探讨AI大模型系......
  • 【书生浦语大模型实战营四期】基础岛 第6关 OpenCompass 评测书生大模型实践
    基础任务评测API模型创建用于评测conda环境condacreate-nopencompasspython=3.10condaactivateopencompasscd/rootgitclone-b0.3.3https://github.com/open-compass/opencompasscdopencompasspipinstall-e.填写APIKEYexportINTERNLM_API_......
  • Redis中常见的数据类型及其应用场景Ib
    五种常见数据类型Redis中的数据类型指的是value存储的数据类型,key都是以String类型存储的,value根据场景需要,可以以String、List等类型进行存储。各数据类型介绍:Redis数据类型对应的底层数据结构String类型的应用场景常用命令存放键值:setkeyvalue[EXseconds][PX......
  • Javaweb开发核⼼心之Cookie实战
    简介:javaweb操作浏览器器cookie1.创建并发送Cookiepackagecom.gaze;importjavax.servlet.ServletException;importjavax.servlet.annotation.WebServlet;importjavax.servlet.http.*;importjava.io.IOException;@WebServlet("/setCookie")publicclassSetCook......