kafkaToKafka
{"user_id": "1", "page_id":"1", "status": "success"}
{"user_id": "1", "page_id":"1", "status": "success"}
{"user_id": "1", "page_id":"1", "status": "success"}
{"user_id": "1", "page_id":"1", "status": "success"}
{"user_id": "1", "page_id":"1", "status": "fail"}
package com.bigdata.day07;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class _08_kafka_to_kafka {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
tabEnv.executeSql("CREATE TABLE table1 (\n" +
" `user_id` int,\n" +
" `page_id` int,\n" +
" `status` STRING\n" +
") WITH (\n" +
" 'connector' = 'kafka',\n" +
" 'topic' = 'topicA',\n" +
" 'properties.bootstrap.servers' = 'bigdata01:9092',\n" +
" 'properties.group.id' = 'g1',\n" +
" 'scan.startup.mode' = 'latest-offset',\n" +
// 这个是需要flink-json的
" 'format' = 'json'\n" +
")");
tabEnv.executeSql("CREATE TABLE table2 (\n" +
" `user_id` int,\n" +
" `page_id` int,\n" +
" `status` STRING\n" +
") WITH (\n" +
" 'connector' = 'kafka',\n" +
" 'topic' = 'topicB',\n" +
" 'properties.bootstrap.servers' = 'bigdata01:9092',\n" +
" 'properties.group.id' = 'g1',\n" +
" 'scan.startup.mode' = 'latest-offset',\n" +
" 'format' = 'json'\n" +
")");
tabEnv.executeSql("insert into table2 select * from table1 where status = 'success'");
}
}
// 非常简单的代码
使用executeSql后,就可以不使用execute了
但是若有一个print ,那么还需要execute
kafkaToMysql
需要先在mysql中建表
create table t_success
(
id int auto_increment,
user_id int null,
page_id int null,
status varchar(20) null,
constraint t_success_pk
primary key (id)
);
package com.bigdata.day07;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class _09_kafka_to_mysql {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
tabEnv.executeSql("CREATE TABLE table1 (\n" +
" `user_id` int,\n" +
" `page_id` int,\n" +
" `status` STRING\n" +
") WITH (\n" +
" 'connector' = 'kafka',\n" +
" 'topic' = 'topicA',\n" +
" 'properties.bootstrap.servers' = 'bigdata01:9092',\n" +
" 'properties.group.id' = 'g1',\n" +
" 'scan.startup.mode' = 'latest-offset',\n" +
" 'format' = 'json'\n" +
")");
tabEnv.executeSql("CREATE TABLE table2 (\n" +
" `user_id` int,\n" +
" `page_id` int,\n" +
" `status` STRING\n" +
") WITH (\n" +
" 'connector' = 'jdbc',\n" +
" 'url' = 'jdbc:mysql://localhost:3306/edu?useUnicode=true&characterEncoding=utf8',\n" +
" 'table-name' = 't_success', \n" +
" 'username' = 'root',\n" +
" 'password' = 'root'\n" +
")");
tabEnv.executeSql("insert into table2 select * from table1 where status = 'success'");
}
}
readMysql
package com.bigdata.day07;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
public class _10_read_mysql {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
tabEnv.executeSql("CREATE TABLE table1 (\n" +
" `user_id` int,\n" +
" `page_id` int,\n" +
" `status` STRING\n" +
") WITH (\n" +
" 'connector' = 'jdbc',\n" +
" 'url' = 'jdbc:mysql://localhost:3306/edu?useUnicode=true&characterEncoding=utf8',\n" +
" 'table-name' = 't_success', \n" +
" 'username' = 'root',\n" +
" 'password' = 'root'\n" +
")");
Table table = tabEnv.sqlQuery("select * from table1");
DataStream<Row> appendStream = tabEnv.toAppendStream(table, Row.class);
appendStream.print();
env.execute();
}
}
标签:status,int,flinkSql,kafka,tabEnv,user,mysql,id,page
From: https://blog.csdn.net/weixin_52642840/article/details/144226654