首页 > 数据库 >【洛谷】AT_abc178_d [ABC178D] Redistribution 的题解

【洛谷】AT_abc178_d [ABC178D] Redistribution 的题解

时间:2024-09-27 19:49:01浏览次数:10  
标签:洛谷 cout int 题解 namespace long abc178 Redistribution

【洛谷】AT_abc178_d [ABC178D] Redistribution 的题解

洛谷传送门

AT传送门

题解

一个水水的动态规划,阿巴巴巴。

题目大概是这样:

给定一个正整数 S S S,问有多少个数满足以下条件:

  • 序列中不能出现小于 3 3 3 的正整数。

  • 序列中的和必须等于输入的 S S S。

这是一道求方案数的题,我们可以用动态规划来做,那么我们就可以定义 d p i dp_i dpi​ 为和为 i i i
时的方案数,然后我们就可以想到对于每一个 d p i dp_i dpi​ 它都等于从
i − 3 i−3 i−3 到 3 3 3 的方案数总和加一,最后输出 f n f_n fn​ 即可。

最后提醒,AtCoder 输出要换行!!!

代码

#include <bits/stdc++.h>
#define lowbit(x) x & (-x)
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int mod = 1e9 + 7;
namespace fastIO {
	inline int read() {
		register int x = 0, f = 1;
		register char c = getchar();
		while (c < '0' || c > '9') {
			if(c == '-') f = -1;
			c = getchar();
		}
		while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
		return x * f;
	}
	inline void write(int x) {
		if(x < 0) putchar('-'), x = -x;
		if(x > 9) write(x / 10);
		putchar(x % 10 + '0');
		return;
	}
}
using namespace fastIO;
int n;
ll f[2005];
int main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	n = read();
	for(int i = 3; i <= n; i ++) {
		f[i] = 1;
		for(int j = 3; j <= i - 3; j ++) {
			f[i] = (f[i] + f[j]) % mod;
		}	
	}
	cout << f[n] << endl;
	return 0;
}

标签:洛谷,cout,int,题解,namespace,long,abc178,Redistribution
From: https://blog.csdn.net/ZH_qaq/article/details/142578607

相关文章

  • 【2024秋#113】锦城ACM周测题解
    2024秋#112】锦城ACM周测题解A.awa1思路这里是对答案进行二分,我们预测一个答案的范围,取这个范围的中点,试探是否可行。如果可行,将这个范围的右边的范围缩小到mid(注意我们所求是最短时间,所以当mid可行的时候我们是将预测的最大的值变小),如果不可行,说明我们预测的这个范围左边......
  • Pbootcms源码上传安装后前端显示错乱乱码问题解决方案
    PbootCMS前端显示错乱或乱码问题可能是由多种原因造成的,下面是一些可能的解决方案:检查字符集设置:确认前端页面的字符集设置是否正确。通常在HTML头部会有一个<meta>标签定义字符集,例如<metacharset="UTF-8">。同时检查PbootCMS后台的字符集设置是否与前端一致,确保数据库和......
  • 【题解】【归并排序】—— [NOIP2011 普及组] 瑞士轮
    【题解】【归并排序】——[NOIP2011普及组]瑞士轮[NOIP2011普及组]瑞士轮题目背景题目描述输入格式输出格式输入输出样例输入#1输出#1提示1.思路解析2.AC代码[NOIP2011普及组]瑞士轮通往洛谷的传送门题目背景在双人对决的竞技性比赛,如乒乓球、羽毛球、......
  • P10603 BZOJ4372 烁烁的游戏 题解
    题目传送门前置知识动态树分治|动态开点线段树|标记永久化解法考虑动态点分治。两种操作本质上是将luoguP6329【模板】点分树|震波的操作互换了下,将原需支持单点修改、区间查询的数据结构换成需支持区间修改、单点查询的数据结构即可。区间修改、单点查询的动态开......
  • Light Bulbs (Hard Version) 题解
    提供一个非常另类的解法,没有异或哈希,没有建图,没有缩点和强连通分量,而是使用了并查集和线段树的算法。由于每个颜色恰好有两种,我们考虑把两个颜色的位置\(i,j\)变成一段区间\([i,j]\)(\(i<j\)),然后每个颜色就能用一段区间\([l,r]\)表示。根据题意,如果我们激活了一个区间\([l,......
  • 【MX-J3-T3+】Tuple+ 题解
    一个比较自然的思路就是对于每个三元组\((u_i,v_i,w_i)\),把\((v_i,w_i)\)这个二元组放在属于\(u_i\)的vector里面。然后对于每一个\(i\in[1,n-3]\),把\(i\)的vector里面的所有二元组\((x,y)\)当作一条连接\(x,y\)的无向边,则我们的目的是在图中找出所有的三元环\(......
  • [ARC115E] LEQ and NEQ 题解
    我这场打的VP,结果E思考的时间比A还少。。但是我觉得我能想出这道题还是很有意义的,写篇题解记录一下。首先应该都不难想到动态规划吧?我们先使用暴力DP:设\(dp_{i,j}\)表示处理完前\(i\)个数,第\(i\)个数为\(j\)的方案数。我们考虑进行分类讨论:\(a_i≥a_{i-1}\):此时......
  • 9.27今日错题解析(软考)
    目录前言信息安全——网络攻击算法基础——二分查找数据库系统——数据库设计过程前言这是用来记录我每天备考软考设计师的错题的,今天知识点为网络攻击、二分查找和数据库设计过程,大部分错题摘自希赛中的题目,但相关解析是原创,有自己的思考,为了复习:),最后希望各位报考......
  • [GXOI/GZOI2019] 逼死强迫症 题解
    看到\(N\leq2\times10^9\)的范围,一眼矩阵快速幂优化DP。首先考虑朴素DP怎么写。根据题目所给信息,我们设\(dp_{i,0}\)表示前面\(i\)个方砖,并且已经使用了\(2\)个\(1\times1\)的方砖,\(dp_{i,1}\)则表示前面\(i\)个方砖,没有使用任何一个\(1\times1\)的方砖。......
  • [CERC2015] Digit Division 题解
    \(O(n^2)\)做法和大部分人最开始一样,我也想的是DP。设\(dp_i\)表示用前面\(i\)个字符拆分得到的答案。既然是统计方案数,我们肯定是根据前面的答案累加。考虑在\([1,i-1]\)中选择一个\(j\),如果\([j+1,i]\)的字符组成的数字能够被\(m\)整除,那么\(dp_i\)就可以累加......