首页 > 数据库 >[MySQL]深分页优化

[MySQL]深分页优化

时间:2024-09-17 21:51:16浏览次数:12  
标签:account 分页 MySQL 主键 索引 time 查询 优化 id

limit深分页为什么会变慢?

先看下表结构:

CREATE TABLE account (
  id int(11) NOT NULL AUTO_INCREMENT COMMENT '主键Id',
  name varchar(255) DEFAULT NULL COMMENT '账户名',
  balance int(11) DEFAULT NULL COMMENT '余额',
  create_time datetime NOT NULL COMMENT '创建时间',
  update_time datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (id),
  KEY idx_name (name),
  KEY idx_update_time (update_time) //索引
) ENGINE=InnoDB AUTO_INCREMENT=1570068 DEFAULT CHARSET=utf8 ROW_FORMAT=REDUNDANT COMMENT='账户表';

假设深分页的执行SQL如下:

select id,name,balance from account where update_time> '2020-09-19' limit 100000,10;

这个SQL的执行时间如下:

执行完需要0.742秒,深分页为什么会变慢呢?如果换成 limit 0,10,只需要0.006秒哦

我们先来看下这个SQL的执行流程:
image

通过普通二级索引树idx_update_time,过滤update_time条件,找到满足条件的记录ID。
通过ID,回到主键索引树,找到满足记录的行,然后取出展示的列(回表)
扫描满足条件的100010行,然后扔掉前100000行,返回。

SQL的执行流程

执行计划如下:
image

SQL变慢原因有两个:

  • limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10,就会扫描100010行,而limit 0,10,只扫描10行。

  • limit 100000,10 扫描更多的行数,也意味着回表更多的次数。

通过子查询优化

因为以上的SQL,回表了100010次,实际上,我们只需要10条数据,也就是我们只需要10次回表其实就够了。因此,我们可以通过减少回表次数来优化。
回顾B+ 树结构
那么,如何减少回表次数呢?我们先来复习下B+树索引结构哈~
InnoDB中,索引分主键索引(聚簇索引)和二级索引

image

主键索引,叶子节点存放的是整行数据
二级索引,叶子节点存放的是主键的值。

把条件转移到主键索引树

如果我们把查询条件,转移回到主键索引树,那就不就可以减少回表次数啦。转移到主键索引树查询的话,查询条件得改为主键id了,之前SQL的update_time这些条件咋办呢?抽到子查询那里嘛~
子查询那里怎么抽的呢?因为二级索引叶子节点是有主键ID的,所以我们直接根据update_time来查主键ID即可,同时我们把 limit 100000的条件,也转移到子查询,完整SQL如下:

select id,name,balance FROM account where id >= (select a.id from account a where a.update_time >= '2020-09-19' limit 100000, 1) LIMIT 10;

(可以加下时间条件到外面的主查询)

查询效果一样的,执行时间只需要0.038秒!

我们来看下执行计划
由执行计划得知,子查询 table a查询是用到了idx_update_time索引。首先在索引上拿到了聚集索引的主键ID,省去了回表操作,然后第二查询直接根据第一个查询的 ID往后再去查10个就可以了!

因此,这个方案是可以的~
INNER JOIN 延迟关联
延迟关联的优化思路,跟子查询的优化思路其实是一样的:都是把条件转移到主键索引树,然后减少回表。不同点是,延迟关联使用了inner join代替子查询。
优化后的SQL如下:

SELECT  acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.update_time >= '2020-09-19' ORDER BY a.update_time LIMIT 100000, 10) AS  acct2 on acct1.id= acct2.id;

查询效果也是杠杆的,只需要0.034秒

执行计划如下:

查询思路就是,先通过idx_update_time二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。
标签记录法
limit 深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉。这样就导致查询性能的下降。
其实我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。
假设上一次记录到100000,则SQL可以修改为:

select  id,name,balance FROM account where id > 100000 order by id limit 10;

这样的话,后面无论翻多少页,性能都会不错的,因为命中了id索引。但是你,这种方式有局限性:需要一种类似连续自增的字段。
使用between...and...
很多时候,可以将limit查询转换为已知位置的查询,这样MySQL通过范围扫描between...and,就能获得到对应的结果。
如果知道边界值为100000,100010后,就可以这样优化:

select  id,name,balance FROM account where id between 100000 and 100010 order by id desc;

手把手实战案例
我们一起来看一个实战案例哈。假设现在有表结构如下,并且有200万数据.

CREATE TABLE account (
 id varchar(32) COLLATE utf8_bin NOT NULL COMMENT '主键',
 account_no varchar(64) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '账号'
 amount decimal(20,2) DEFAULT NULL COMMENT '金额'
 type varchar(10) COLLATE utf8_bin DEFAULT NULL COMMENT '类型A,B'
 create_time datetime DEFAULT NULL COMMENT '创建时间',
 update_time datetime DEFAULT NULL COMMENT '更新时间',
 PRIMARY KEY (id),
 KEY `idx_account_no` (account_no),
 KEY `idx_create_time` (create_time)
 ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='账户表' 

业务需求是这样:获取最2021年的A类型账户数据,上报到大数据平台。
一般思路的实现方式
很多伙伴接到这么一个需求,会直接这么实现了:

Integer total = accountDAO.countAccount();

//查询上报总数量对应的SQL

<select id ='countAccount' resultType="java.lang.Integer">
  seelct count(1) 
  from account
  where create_time >='2021-01-01 00:00:00'
  and  type ='A'
</select>

//计算页数
int pageNo = total % pageSize == 0 ? total / pageSize : (total / pageSize + 1);

//分页查询,上报
for(int i = 0; i < pageNo; i++){
 List<AcctountPO> list = accountDAO.listAccountByPage(startRow,pageSize);
 startRow = (pageNo-1)*pageSize;
 //上报大数据
 postBigData(list);
}
 
//分页查询SQL(可能存在limit深分页问题,因为account表数据量几百万)
<select id ='listAccountByPage' >
  seelct * 
  from account
  where create_time >='2021-01-01 00:00:00'
  and  type ='A'
  limit #{startRow},#{pageSize}
</select>

实战优化方案
以上的实现方案,会存在limit深分页问题,因为account表数据量几百万。那怎么优化呢?
其实可以使用标签记录法,有些伙伴可能会有疑惑,id主键不是连续的呀,真的可以使用标签记录?
当然可以,id不是连续,我们可以通过order by让它连续嘛。优化方案如下:

String  lastId = accountDAO.queryMinId();

//查询最小ID对应的SQL
<select id="queryMinId" returnType=“java.lang.String”>
select MIN(id) 
from account
where create_time >='2021-01-01 00:00:00'
and type ='A'
</select>

//一页的条数
Integer pageSize = 100;

List<AcctountPO> list ;
do{
   list = listAccountByPage(lastId,pageSize);
   //标签记录法,记录上次查询过的Id
   lastId = list.get(list,size()-1).getId();
    //上报大数据
    postBigData(list);
}while(CollectionUtils.isNotEmpty(list));

<select id ="listAccountByPage">
  select * 
  from account 
  where create_time >='2021-01-01 00:00:00'
  and id > #{lastId}
  and type ='A'
  order by id asc  
  limit #{pageSize}
</select>

总结

  • 使用子查询减少超多回表
  • 使用记录上次分页位置
  • 覆盖索引减少回表

标签:account,分页,MySQL,主键,索引,time,查询,优化,id
From: https://www.cnblogs.com/DCFV/p/18417592

相关文章

  • 中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间
    中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测目录中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测效果一览基本介绍程序设计参考资料效果一览......
  • 移动设备上的大模型优化:MobileLLM
    人工智能咨询培训老师叶梓转载标明出处现有的大模型因为过于庞大难以直接部署在资源受限的移动设备上。针对这一问题,来自 Meta公司和PyTorch的研究团队提出了一种新的优化方法,旨在为移动设备设计高效的、参数少于十亿的高质量大模型,即MobileLLM。图1为小于10亿参数的......
  • 代码随想录算法训练营第六十天 | Bellman_ford 队列优化算法
    目录Bellman_ford队列优化算法思路模拟过程方法一:Bellman_ford队列优化Bellman_ford队列优化算法题目链接:卡码网:94.城市间货物运输I文章讲解:代码随想录 某国为促进城市间经济交流,决定对货物运输提供补贴。共有n个编号为1到n的城市,通过道路网络连接,......
  • 基于SpringBoot+Vue+MySQL的网上租赁系统
    系统展示用户前台界面管理员后台界面系统背景  在当前共享经济蓬勃发展的背景下,网上租赁系统作为连接租赁双方的重要平台,正逐步改变着人们的消费观念和生活方式。通过构建一个基于SpringBoot、Vue.js与MySQL的网上租赁系统,我们旨在为用户提供便捷、高效、安......
  • 基于SpringBoot+Vue+MySQL的在线视频教育平台
    系统展示用户前台界面管理员后台界面系统背景  随着信息技术的飞速发展和互联网普及率的不断提高,传统教育模式正面临深刻变革。在线视频教育平台作为数字化教育的重要载体,以其灵活性强、资源丰富、覆盖广泛等优势,逐渐成为人们获取知识、提升技能的新途径。......