首页 > 数据库 >[Mysql]索引

[Mysql]索引

时间:2024-07-05 11:52:18浏览次数:25  
标签:Tree 查询 索引 Mysql 主键 数据 节点

MySQL索引详解

索引介绍

索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。
索引底层数据结构存在很多种类型,常见的索引结构有: B 树, B+树 和 Hash、红黑树。
在 MySQL 中,无论是 Innodb 还是 MyIsam,都使用了 B+树作为索引结构。

索引的优缺点
优点:
使用索引可以大大加快 数据的检索速度(大大减少检索的数据量), 这也是创建索引的最主要的原因。
通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
缺点:
创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
索引需要使用物理文件存储,也会耗费一定空间。
但是,使用索引一定能提高查询性能吗?
大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。

索引底层数据结构选型

Hash 表

哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。
为何能够通过 key 快速取出 value 呢? 原因在于 哈希算法(也叫散列算法)。通过哈希算法,我们可以快速找到 key 对应的 index,找到了 index 也就找到了对应的 value。

hash = hashfunc(key)
index = hash % array_size

但是哈希算法有个 Hash 冲突 问题,也就是说多个不同的 key 最后得到的 index 相同。通常情况下,我们常用的解决办法是 链地址法。链地址法就是将哈希冲突数据存放在链表中。就比如 JDK1.8 之前 HashMap 就是通过链地址法来解决哈希冲突的。不过,JDK1.8 以后HashMap为了减少链表过长的时候搜索时间过长引入了红黑树。

为了减少 Hash 冲突的发生,一个好的哈希函数应该“均匀地”将数据分布在整个可能的哈希值集合中。

MySQL 的 InnoDB 存储引擎不直接支持常规的哈希索引,但是,InnoDB 存储引擎中存在一种特殊的“自适应哈希索引”(Adaptive Hash Index),自适应哈希索引并不是传统意义上的纯哈希索引,而是结合了 B+Tree 和哈希索引的特点,以便更好地适应实际应用中的数据访问模式和性能需求。自适应哈希索引的每个哈希桶实际上是一个小型的 B+Tree 结构。这个 B+Tree 结构可以存储多个键值对,而不仅仅是一个键。这有助于减少哈希冲突链的长度,提高了索引的效率。关于 Adaptive Hash Index 的详细介绍,可以查看 MySQL 各种“Buffer”之 Adaptive Hash Index 这篇文章。

既然哈希表这么快,为什么 MySQL 没有使用其作为索引的数据结构呢
主要是因为 Hash 索引不支持顺序和范围查询。假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。
并且,每次 IO 只能取一个。

试想一种情况:

SELECT * FROM tb1 WHERE id < 500;

在这种范围查询中,B+优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。

二叉查找树(BST)

二叉查找树(Binary Search Tree)是一种基于二叉树的数据结构,它具有以下特点:
左子树所有节点的值均小于根节点的值。
右子树所有节点的值均大于根节点的值。
左右子树也分别为二叉查找树。
当二叉查找树是平衡的时候,也就是树的每个节点的左右子树深度相差不超过 1 的时候,查询的时间复杂度为 O(log2(N)),具有比较高的效率。
然而,当二叉查找树不平衡时,例如在最坏情况下(有序插入节点),树会退化成线性链表(也被称为斜树),导致查询效率急剧下降,时间复杂退化为 O(N)。

也就是说,二叉查找树的性能非常依赖于它的平衡程度,这就导致其不适合作为 MySQL 底层索引的数据结构。

为了解决这个问题,并提高查询效率,人们发明了多种在二叉查找树基础上的改进型数据结构,如平衡二叉树、B-Tree、B+Tree 等。

AVL 树

AVL 树是计算机科学中最早被发明的自平衡二叉查找树,它的名称来自于发明者 G.M. Adelson-Velsky 和 E.M. Landis 的名字缩写。AVL 树的特点是保证任何节点的左右子树高度之差不超过 1,因此也被称为高度平衡二叉树,它的查找、插入和删除在平均和最坏情况下的时间复杂度都是 O(logn)。

AVL 树采用了旋转操作来保持平衡。主要有四种旋转操作:
LL 旋转、
RR 旋转、
LR 旋转和
RL 旋转。其中 LL 旋转和 RR 旋转分别用于处理左左和右右失衡,而 LR 旋转和 RL 旋转则用于处理左右和右左失衡。

由于 AVL 树需要频繁地进行旋转操作来保持平衡,因此会有较大的计算开销进而降低了查询性能。并且, 在使用 AVL 树时,每个树节点仅存储一个数据,而每次进行磁盘 IO 时只能读取一个节点的数据,如果需要查询的数据分布在多个节点上,那么就需要进行多次磁盘 IO。 磁盘 IO 是一项耗时的操作,在设计数据库索引时,我们需要优先考虑如何最大限度地减少磁盘 IO 操作的次数。

实际应用中,AVL 树使用的并不多。

红黑树

红黑树是一种自平衡二叉查找树,通过在插入和删除节点时进行颜色变换和旋转操作,使得树始终保持平衡状态,它具有以下特点:

每个节点非红即黑;
根节点总是黑色的;
每个叶子节点都是黑色的空节点(NIL 节点);
如果节点是红色的,则它的子节点必须是黑色的(反之不一定);
从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。

和 AVL 树不同的是,红黑树并不追求严格的平衡,而是大致的平衡。正因如此,红黑树的查询效率稍有下降,因为红黑树的平衡性相对较弱,可能会导致树的高度较高,这可能会导致一些数据需要进行多次磁盘 IO 操作才能查询到,这也是 MySQL 没有选择红黑树的主要原因。也正因如此,红黑树的插入和删除操作效率大大提高了,因为红黑树在插入和删除节点时只需进行 O(1) 次数的旋转和变色操作,即可保持基本平衡状态,而不需要像 AVL 树一样进行 O(logn) 次数的旋转操作。

红黑树的应用还是比较广泛的,TreeMap、TreeSet 以及 JDK1.8 的 HashMap 底层都用到了红黑树。对于数据在内存中的这种情况来说,红黑树的表现是非常优异的。

B 树& B+树

B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)的意思。

目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。

B 树& B+树两者有何异同呢?

B 树的所有节点既存放键(key) 也存放数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。

B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
在 B 树中进行范围查询时,首先找到要查找的下限,然后对 B 树进行中序遍历,直到找到查找的上限;而 B+树的范围查询,只需要对链表进行遍历即可。
综上,B+树与 B 树相比,具备更少的 IO 次数、更稳定的查询效率和更适于范围查询这些优势。

在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。(下面的内容整理自《Java 工程师修炼之道》)

MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引(非聚集索引)”。

InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(聚集索引)”,而其余的索引都作为 辅助索引 ,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

B树和B+Tree每一个节点实际上可以理解为是一个文件页 mysql默认给一个文件页分配16k存储
B树的每个节点都会存储data数据,而B+Tree的话非叶子节点是存储的索引(冗余),不存储data数据,这样每一页文件页能存储的节点就很多,树的高度就可以得到很好的控制,树的高度越高,从磁盘load节点到内存对比的次数就会越多,磁盘I/O是费时。
所以B+Tree在树高度相同的情况下能够存储更多的索引数据,间接的减少了磁盘的I/O操作,B+Tree的I/O次数会更加稳定一些。
还有就是从范围查询的角度上来说B+Tree也具备绝对的优势,因为B+Tree在每个相邻的叶子节点之间都有互相指向
B+Tree在全表扫描的情况下也是比较占优势的,因为B+Tree的数据都是存储在非叶子节点的,所以只需要扫描叶子节点就可以拿到全部数据了,B Tree的话就需要从头遍历整颗树
————————————————

                        版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/qq_42285585/article/details/128979081

索引类型总结

按照数据结构维度划分:

B+Tree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。

哈希索引:类似键值对的形式,一次即可定位。

RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

全文索引:对文本的内容进行分词,进行搜索。目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

按照底层存储方式角度划分:

聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

按照应用维度划分:

主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
普通索引:仅加速查询。
唯一索引:加速查询 + 列值唯一(可以有 NULL)。
覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
全文索引:对文本的内容进行分词,进行搜索。目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
MySQL 8.x 中实现的索引新特性:

隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。

主键索引(Primary Key)

数据表的主键列使用的就是主键索引。

一张数据表有只能有一个主键,并且主键不能为 null,不能重复。

在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引且不允许存在 null 值的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。

回表查询

回表查询是指,当我们在索引里没查到想要的数据的时候,要根据索引中的主键值去再进行查询

二级索引

二级索引(Secondary Index)又称为辅助索引,是因为二级索引的叶子节点存储的数据是主键。也就是说,通过二级索引,可以定位主键的位置。

唯一索引,普通索引,前缀索引等索引属于二级索引。

唯一索引(Unique Key)

唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。

普通索引(Index)

普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。

前缀索引(Prefix)

前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,
因为只取前几个字符。

全文索引(Full Text)

全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

聚簇索引

聚簇索引(Clustered Index)即索引结构和数据一起存放的索引,并不是一种单独的索引类型。InnoDB 中的主键索引就属于聚簇索引。

在 MySQL 中,InnoDB 引擎的表的 .ibd文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。

聚簇索引的优缺点
优点:

查询速度非常快:聚簇索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。

对排序查找和范围查找优化:聚簇索引对于主键的排序查找和范围查找速度非常快。
缺点:

依赖于有序的数据:因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
更新代价大:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。

非聚簇索引

非聚簇索引(Non-Clustered Index)即索引结构和数据分开存放的索引,并不是一种单独的索引类型。二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

非聚簇索引的叶子节点并不一定存放数据的指针,
因为二级索引的叶子节点就存放的是主键,根据主键再回表查数据。

非聚簇索引的优缺点
优点:

更新代价比聚簇索引要小 。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的

缺点:

依赖于有序的数据:跟聚簇索引一样,非聚簇索引也依赖于有序的数据
可能会二次查询(回表):这应该是非聚簇索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。

非聚簇索引一定回表查询吗(覆盖索引)?

非聚簇索引不一定回表查询。

试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。

SELECT name FROM table WHERE name='guang19';
那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。

即使是 MYISAM 也是这样,虽然 MYISAM 的主键索引确实需要回表,因为它的主键索引的叶子节点存放的是指针。但是!如果 SQL 查的就是主键呢?

SELECT id FROM table WHERE id=1;
主键索引本身的 key 就是主键,查到返回就行了。这种情况就称之为覆盖索引了。

覆盖索引和联合索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为 覆盖索引(Covering Index) 。我们知道在 InnoDB 存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次,这样就会比较慢。而覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!

覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。

如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引,
那么直接根据这个索引就可以查到数据,也无需回表。

我们这里简单演示一下覆盖索引的效果。

  1. 创建一个名为 cus_order 的表,来实际测试一下这种排序方式。为了测试方便, cus_order 这张表只有 id、score、name这 3 个字段。

    CREATE TABLE `cus_order` (
      `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
      `score` int(11) NOT NULL,
      `name` varchar(11) NOT NULL DEFAULT '',
      PRIMARY KEY (`id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=100000 DEFAULT CHARSET=utf8mb4;
    
  2. 定义一个简单的存储过程(PROCEDURE)来插入 100w 测试数据。

DELIMITER ;;
CREATE DEFINER=`root`@`%` PROCEDURE `BatchinsertDataToCusOder`(IN start_num INT,IN max_num INT)
BEGIN
      DECLARE i INT default start_num;
      WHILE i < max_num DO
          insert into `cus_order`(`id`, `score`, `name`)
          values (i,RAND() * 1000000,CONCAT('user', i));
          SET i = i + 1;
      END WHILE;
  END;;
DELIMITER ;

存储过程定义完成之后,我们执行存储过程即可!

CALL BatchinsertDataToCusOder(1, 1000000); # 插入100w+的随机数据
等待一会,100w 的测试数据就插入完成了!

3、创建覆盖索引并使用 EXPLAIN 命令分析。

为了能够对这 100w 数据按照 score 进行排序,我们需要执行下面的 SQL 语句。

SELECT score,name FROM cus_order ORDER BY score DESC;#降序排序

使用 EXPLAIN 命令分析这条 SQL 语句,通过 Extra 这一列的 Using filesort ,我们发现是没有用到覆盖索引的。

不过这也是理所应当,毕竟我们现在还没有创建索引呢!

我们这里以 score 和 name 两个字段建立联合索引:
(先按score排序,score相同的时候再按name排序)

ALTER TABLE cus_order ADD INDEX id_score_name(score, name);

创建完成之后,再用 EXPLAIN 命令分析再次分析这条 SQL 语句。

通过 Extra 这一列的 Using index ,说明这条 SQL 语句成功使用了覆盖索引。

联合索引

使用表中的多个字段创建索引,就是 联合索引,也叫 组合索引 或 复合索引。

以 score 和 name 两个字段建立联合索引:

ALTER TABLE cus_order ADD INDEX id_score_name(score, name);

最左前缀匹配原则

最左前缀匹配原则指的是,在使用联合索引时,MySQL 会根据联合索引中的字段顺序,从左到右依次到查询条件中去匹配,如果查询条件中存在与联合索引中最左侧字段相匹配的字段,则就会使用该字段过滤一批数据,直至联合索引中全部字段匹配完成,或者在执行过程中遇到范围查询(如 >、< )才会停止匹配。对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配。所以,我们在使用联合索引时,可以将区分度高的字段放在最左边,这也可以过滤更多数据。

联合索引的最左匹配原则,在遇到范围查询(如 >、<)的时候,就会停止匹配,也就是范围查询的字段可以用到联合索引,但是在范围查询字段后面的字段无法用到联合索引。注意,对于 >=、<=、BETWEEN、like 前缀匹配的范围查询,并不会停止匹配。

相关阅读:联合索引的最左匹配原则全网都在说的一个错误结论。

索引下推

索引下推(Index Condition Pushdown) 是 MySQL 5.6 版本中提供的一项索引优化功能,可以在非聚簇索引遍历过程中,对索引中包含的字段先做判断,过滤掉不符合条件的记录,减少回表次数。

回表的时机是什么时候

如果有一条语句中包含几个条件,
那么查到满足第一个条件的数据的时候就要回表吗?

正确使用索引的一些建议

  • 选择合适的字段创建索引

    • 不为 NULL 的字段:索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0,1,true,false 这样语义较为清晰的短值或短字符作为替代。
    • 被频繁查询的字段:我们创建索引的字段应该是查询操作非常频繁的字段。
    • 被作为条件查询的字段:被作为 WHERE 条件查询的字段,应该被考虑建立索引。
    • 频繁需要排序的字段:索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
    • 被经常频繁用于连接的字段:经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。
  • 被频繁更新的字段应该慎重建立索引
    虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。

  • 限制每张表上的索引数量
    索引并不是越多越好,建议单张表索引不超过 5 个!索引可以提高效率同样可以降低效率。

  • 索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。
    因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。

  • 尽可能的考虑建立联合索引而不是单列索引
    因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升。

  • 注意避免冗余索引
    冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city )和(name )这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者的 在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。

  • 字符串类型的字段使用前缀索引代替普通索引
    前缀索引仅限于字符串类型,较普通索引会占用更小的空间,所以可以考虑使用前缀索引带替普通索引。

标签:Tree,查询,索引,Mysql,主键,数据,节点
From: https://www.cnblogs.com/DCFV/p/18285543

相关文章

  • mysql数据库安装
    mysql数据库安装1.从官网下载yum包直接使用wget下载yum包wgethttp://repo.mysql.com/mysql57-community-release-el7-10.noarch.rpm​​2.安装软件源rpm-Uvhmysql57-community-release-el7-10.noarch.rpm​​3.安装Mysql服务端yuminstall-ymysql-communi......
  • MySQL - [16] SSL
    题记部分 一、标题  二、相关SQL(1)查看MySQL服务器是否支持SSL:SHOWVARIABLESLIKE'have_ssl';Tips:如果输出显示have_ssl的值为YES,则表明MySQL支持SSL。(2)检查SSL证书和密钥是否已被配置:SHOWVARIABLESLIKE'ssl%';Tips:查看输出结果中是否有ssl_ca、ssl_cert......
  • Mysql
    显示数据库1showdatabases;创建数据库12CREATE DATABASE 数据库名称 DEFAULT CHARSETutf8 COLLATE utf8_general_ci;CREATE DATABASE 数据库名称 DEFAULT CHARACTER SET gbk COLLATE gbk_chinese_ci;删除数据库......
  • MySQL弱口令暴力破解
    10-mysql弱口令暴力破解 主机靶机:本地Linux服务器虚拟机+phpstudy攻击主机:本地Kali虚拟机 配置好网络让主机之间相互可以通信 数据库数据库版本:mysql5.5.62 开启远程连接。 1)使用Hydra工具进行暴力破解kali自带的hydra工具是一款非常强大的暴力破解......
  • MySQL网络安全-防syn攻击防暴力攻击
    防syn泛滥攻击、暴力破解攻击 错误:ERROR1129(00000):Host'xxx'isblockedbecauseofmanyconnectionerrors.Unblockwith'mysqladminflush-hosts' 很多资料说,这个是密码输入错误的尝试次数超过max_connect_errors变量,MySQL就会阻塞这个客户端登录。 官方描述:......
  • mysql注入
    mysql注入前置知识mysql语句,php表单数据处理。功能展示以sqli_libs为例子。在Less-1中,sql语句的合成是这样的。我们提交的url为http://localhost/sqli-labs-master/Less-1/?id=1即拼接为$sql="SELECT*FROMusersWHEREid='1'LIMIT0,1"即查询出表users中id为1的数......
  • Mysql主从复制
    Mysql主从复制搭建(Docker)主从复制原理简介通俗的说就是主机将执行过的写操作sql记录在一个文件中,从机连接主机后读取这个文件,然后以同样的顺序将这些sql执行一遍。实际上主从复制是通过binlog和relay-log实现,主机的更新事件(update、insert、delete)会按照顺序写入binlog......
  • 如何理解mysql 的事务隔离级别 repeatable read
    在MySQL中,事务隔离级别定义了事务之间如何相互隔离,以及数据的一致性和并发性如何平衡。REPEATABLEREAD(可重复读)是MySQL中四种事务隔离级别之一,它在保证数据一致性的同时,允许较高的并发性。MySQL的四种事务隔离级别READUNCOMMITTED(未提交读)READCOMMITTED(提交读)REPEATABLER......
  • 安装MySQL
    win1.下载安装包地址:https://dev.mysql.com/downloads/mysql/下载完成,解压2.配置系统变量变量名:MYSQL_HOME变量值:D:\app\mysql-8.4.1-winx643.安装MySQLD:\app\mysql-8.4.1-winx64\bin>mysqld--initialize-insecure--user=mysqlD:\app\mysql-8.4.1-winx64\bin>mysql......
  • mysql 8详细安装过程(windows 11)
        本次在windows11中安装mysql-8.4.1的压缩版。需要注意的是,其中涉及的安装配置比较多,以及需要执行的命令较多,建议大家收藏保存。一、安装环境二、下载mysql    下载地址:MySQL::DownloadMySQLCommunityServer如果没有oracle账号,点击上面下......