首页 > 数据库 >MySQL全文索引源码剖析之Insert语句执行过程

MySQL全文索引源码剖析之Insert语句执行过程

时间:2024-05-20 10:29:18浏览次数:40  
标签:Insert fts doc cache 全文索引 源码 文档 id

本文分享自华为云社区《MySQL全文索引源码剖析之Insert语句执行过程》 ,作者:GaussDB 数据库。

0.PNG

1. 背景介绍

全文索引是信息检索领域的一种常用的技术手段,用于全文搜索问题,即根据单词,搜索包含该单词的文档,比如在浏览器中输入一个关键词,搜索引擎需要找到所有相关的文档,并且按相关性排好序。

全文索引的底层实现是基于倒排索引。所谓倒排索引,描述的是单词和文档的映射关系,表现形式为(单词,(单词所在的文档,单词在文档中的偏移)),下文的示例将会展示全文索引的组织方式:

mysql> CREATE TABLE opening_lines (
           id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
           opening_line TEXT(500),
           author VARCHAR(200),
           title VARCHAR(200),
           FULLTEXT idx (opening_line)
           ) ENGINE=InnoDB;    
mysql> INSERT INTO opening_lines(opening_line,author,title) VALUES
           ('Call me Ishmael.','Herman Melville','Moby-Dick'),
           ('A screaming comes across the sky.','Thomas Pynchon','Gravity\'s Rainbow'), 
           ('I am an invisible man.','Ralph Ellison','Invisible Man'),
           ('Where now? Who now? When now?','Samuel Beckett','The Unnamable');      
mysql> SET GLOBAL innodb_ft_aux_table='test/opening_lines';
mysql> select * from information_schema.INNODB_FT_INDEX_TABLE; 
 +-----------+--------------+-------------+-----------+--------+----------+  
| WORD      | FIRST_DOC_ID | LAST_DOC_ID | DOC_COUNT | DOC_ID | POSITION |  
+-----------+--------------+-------------+-----------+--------+----------+  
| across    |            4 |           4 |         1 |      4 |       18 |  
| call      |            3 |           3 |         1 |      3 |        0 |  
| comes     |            4 |           4 |         1 |      4 |       12 |  
| invisible |            5 |           5 |         1 |      5 |        8 |  
| ishmael   |            3 |           3 |         1 |      3 |        8 |  
| man       |            5 |           5 |         1 |      5 |       18 |  
| now       |            6 |           6 |         1 |      6 |        6 |  
| now       |            6 |           6 |         1 |      6 |        9 |  
| now       |            6 |           6 |         1 |      6 |       10 |  
| screaming |            4 |           4 |         1 |      4 |        2 |  
| sky       |            4 |           4 |         1 |      4 |       29 |  
+-----------+--------------+-------------+-----------+--------+----------+

如上,创建了一个表,并在opening_line列上建立了全文索引。以插入'Call me Ishmael.'为例,'Call me Ishmael.'也即文档,其ID为3,在构建全文索引时,该文档会被分成3个单词'call', 'me', 'ishmael',由于'me'小于设定的ft_min_word_len(4)最小单词长度被丢弃,最后全文索引中只会记录'call'和'ishmael',其中'call'起始位置在文档中的第0个字符处,偏移为0,'ishmael'起始位置在文档中的第12个字符处,偏移即为12。

关于全文索引更详细的功能介绍可以参考MySQL 8.0 Reference Manual,本文将从源码层面,简要剖析Insert语句的执行过程。

2. 全文索引Cache

全文索引表中记录的是{单词,{文档ID,出现的位置}},即插入一个文档需要将其分词成多个{单词,{文档ID,出现的位置}}这样的结构,如果每次分词完就马上刷磁盘,其性能会非常差。

为了缓解该问题,Innodb引入了全文索引cache,其作用与Change Buffer类似。每次插入一个文档时,先将分词结果缓存到cache,等到cache满了再批量刷到磁盘,从而避免频繁地刷盘。Innodb定义了fts_cache_t的结构来管理cache,如下图所示:

1.png

每张表维护一个cache,对于每个创建了全文索引的表都会在内存中创建一个fts_cache_t的对象。注意,fts_cache_t是表级别的cache, 若一个表创建了多个全文索引,内存中依旧是对应一个fts_cache_t对象。fts_cache_t的一些重要成员如下:

  • optimize_lock、deleted_lock、doc_id_lock:互斥锁,与并发操作相关。
  • deleted_doc_ids:vector类型,存储已删除的doc_id。
  • indexes:vector类型,每个元素表示一个全文索引,每次创建全文索引时,都会往该数组中添加一个元素,每个索引的分词结果以红黑树结构存储,key为word, value就是doc_id及单词的偏移。
  • total_size:cache已分配的全部内存,包含其子结构使用的内存。

3. Insert语句执行过程

以MySQL 8.0.22源码为例,Insert语句的执行主要分为三个阶段,分别为写入行记录阶段、事务提交阶段和刷脏阶段。

3.1 写入行记录阶段

写入行记录的主要工作流如下图所示:

2.png

如上图所示,这一阶段最主要是生成doc_id,并写入到Innodb的行记录中,并且将doc_id缓存,以供事务提交阶段根据doc_id获取文本内容,其函数调用栈如下:

  ha_innobase::write_row
        ->row_insert_for_mysql
            ->row_insert_for_mysql_using_ins_graph
                ->row_mysql_convert_row_to_innobase
                    ->fts_create_doc_id
                        ->fts_get_next_doc_id
                ->fts_trx_add_op
                    ->fts_trx_table_add_op

fts_get_next_doc_id与fts_trx_table_add_op是比较重要的两个函数,fts_get_next_doc_id是为了获取doc_id,innodb行记录中包含了一些隐藏列,比如row_id、trx_id等,若创建了全文索引,其行记录中也会增加一个隐藏字段FTS_DOC_ID,这个值在fts_get_next_doc_id中获取的,如下:

而fts_trx_add_op则是将对全文索引的操作添加到trx中,待事务提交时进一步处理。

3.2 事务提交阶段

事务提交阶段的主要工作流如下图所示:

3.png

这一阶段是整个FTS 插入的最重要的一步,对文档进行分词,获取{单词,{文档ID,出现的位置}},插入到cache,这些都是在这一阶段完成的。其函数调用栈如下:

fts_commit_table
      ->fts_add
          ->fts_add_doc_by_id
              ->fts_cache_add_doc
                    // 根据doc_id获取文档,对文档分词
                  ->fts_fetch_doc_from_rec
                    // 将分词结果添加到cache中
                  ->fts_cache_add_doc
              ->fts_optimize_request_sync_table
                    // 创建FTS_MSG_SYNC_TABLE消息,通知刷脏线程刷脏
                  ->fts_optimize_create_msg(FTS_MSG_SYNC_TABLE)

其中,fts_add_doc_by_id是比较关键的一个函数,该函数主要完成了以下几件事:

1)根据doc_id找到行记录, 获取对应的文档;

2)对文档执行分词,获取{单词,(单词所在的文档,单词在文档中的偏移)}关联对,并添加到cache中;
3)判断cache->total_size是否达到阈值时,若达到阈值,则往刷脏线程的消息队列添加一个FTS_MSG_SYNC_TABLE消息, 通知该线程刷脏(fts_optimize_create_msg),具体代码如下:

为方便理解,我把代码的异常处理部分以及一些查找记录的通用部分省略了,并给出了简要注释:

   static ulint fts_add_doc_by_id(fts_trx_table_t *ftt, doc_id_t doc_id)
    {
            /* 1. 根据docid在fts_doc_id_index索引中的查找记录 */
          /* btr_pcur_open_with_no_init函数中会调用btr_cur_search_to_nth_level,btr_cur_search_to_nth_level
            会执行b+树搜索记录的过程,先从根节点找到docid记录所在的叶子节点,再通过二分查找找到docid记录。*/
        btr_pcur_open_with_no_init(fts_id_index, tuple, PAGE_CUR_LE,
                                    BTR_SEARCH_LEAF, &pcur, 0, &mtr);
        if (btr_pcur_get_low_match(&pcur) == 1) { /* 如果找到了docid记录 */
            if (is_id_cluster) {
                 /** 1.1 如果fts_doc_id_index是聚集索引,则意味着已经找到行记录数据, 直接保存行记录 **/
                doc_pcur = &pcur;
              } else {
                /** 1.2 如果fts_doc_id_index是辅助索引,则需要根据1.1找到的主键id在聚集索引上进一步搜 索行记录,找到后保存行记录**/                btr_pcur_open_with_no_init(clust_index, clust_ref, PAGE_CUR_LE,
                                           BTR_SEARCH_LEAF, &clust_pcur, 0, &mtr); 
               doc_pcur = &clust_pcur;
             }        // 遍历cache->get_docs
            for (ulint i = 0; i < num_idx; ++i) {
                /***** 2. 对文档执行分词,获取{单词,(单词所在的文档,单词在文档中的偏移)}关联对,并添加到cache中 *****/
                fts_doc_t doc;
                fts_doc_init(&doc);
        /** 2.1 根据doc_id获取行记录中该全文索引对应列的内容文档,解析文档,主要是为了构建               fts_doc_t结构体的tokens,tokens为一个红黑树结构,每个元素是一个               {单词,[该单词在文档中出现的位置]}的结构,解析结果存于doc中 **/
                fts_fetch_doc_from_rec(ftt->fts_trx->trx, get_doc, clust_index,doc_pcur, offsets, &doc);
                /** 2.2 将2.1步骤获得的{单词,[该单词在文档中出现的位置]}添加到index_cache中 **/
                fts_cache_add_doc(table->fts->cache, get_doc->index_cache, doc_id, doc.tokens);
               /***** 3. 判断cache->total_size是否达到阈值时。  若达到阈值,则往刷脏线程的消息队列添加一个FTS_MSG_SYNC_TABLE消息, 通知该线程刷脏 *****/
                bool need_sync = false;
                if ((cache->total_size - cache->total_size_before_sync >
                     fts_max_cache_size / 10 || fts_need_sync) &&!cache->sync->in_progress) {
                  /** 3.1 判断是达到阈值 **/
                  need_sync = true;
                  cache->total_size_before_sync = cache->total_size;
                }
                    if (need_sync) {
                    /** 3.2 打包FTS_MSG_SYNC_TABLE消息挂载至fts_optimize_wq队列,                   通知fts_optimize_thread线程刷脏,消息的内容为table id **/                  fts_optimize_request_sync_table(table);
                }
            }
        }
    }  

了解了上述过程,就可以解释官网所述的全文索引事务提交的特殊现象了,参考MySQL 8.0 Reference Manual 的InnoDB Full-Text Index Transaction Handling一节,若对全文索引表插入一些行记录,如果当前事务未提交,我们在当前事务中通过全文索引是查不到已插入的行记录。其原因在于,全文索引的更新是在事务提交的时完成的,事务未提交时,fts_add_doc_by_id尚未执行,因此,不能通过全文索引查找该记录。但是,通过3.1小节可以知道,此时Innodb的行记录是已经插入了的,如果通过全文索引查询,直接执行SELECT COUNT(*) FROM opening_lines是可以查到该记录的。

3.3 刷脏阶段

刷脏阶段的主要工作流如下图所示:

4.png

InnoDB启动时,会创建一个后台线程,线程函数为fts_optimize_thread,工作队列为fts_optimize_wq。3.2节事务提交阶段,当cache满时fts_optimize_request_sync_table函数会往fts_optimize_wq队列添加一个FTS_MSG_SYNC_TABLE消息,后台线程取下该消息后将cache刷新到磁盘。其函数调用栈如下:

  fts_optimize_thread
        ->ib_wqueue_timedwait
            ->fts_optimize_sync_table
                ->fts_sync_table
                    ->fts_sync
                        ->fts_sync_commit
                            ->fts_cache_clear

该线程主要执行的操作如下:

  1. 从fts_optimize_wq队列取一个消息;
  2. 判断消息的类型,若为FTS_MSG_SYNC_TABLE,则执行刷脏;
  3. 将cache中的内容刷新到磁盘上的辅助表;
  4. 清空cache, 置cache为初始状态;
  5. 返回至步骤1,取下一个消息;

在3.2节中,当事务提交时,若fts cache的total_size大于了设定的内存大小阈值,则会写入一条FTS_MSG_SYNC_TABLE插入到fts_optimize_wq队列,刷脏线程会处理该消息,将fts cache中的数据刷到磁盘,随后清空cache。

值得一提的是,当fts cache的total_size大于设定的内存大小阈值时,只会写条消息到fts_optimize_wq队列,此时fts cache在未被后台刷脏线程处理之前,依然可以写入数据,内存会继续增加,这也是导致了全文索引并发插入的OOM问题的根因,问题的修复patch Bug #32831765 SERVER HITS OOM CONDITION WHEN LOADING TWO INNODB,感兴趣的读者可以自行查阅。

OOM查阅链接:https://bugs.mysql.com/bug.php?id=103523

若刷脏线程还未对某个表的fts cache刷脏,此时MySQL进程crash了,cache中的数据丢失。重启之后,第一次对该表执行insert或者select时,在fts_init_index函数中会对crash之前cache中的数据进行恢复,此时会从config表中读取已落盘的synced_doc_id, 将表中大于synced_doc_id的记录读取并分词恢复到cache中,具体实现参考fts_doc_fetch_by_doc_id, fts_init_recover_doc函数。

点击关注,第一时间了解华为云新鲜技术~

 

标签:Insert,fts,doc,cache,全文索引,源码,文档,id
From: https://www.cnblogs.com/huaweiyun/p/18201367

相关文章

  • lodash已死?radash库方法介绍及源码解析 —— 函数柯里化 + Number篇
    写在前面tips:点赞+收藏=学会!主页有更多其他篇章的方法,欢迎访问查看。本篇我们继续介绍radash中函数柯里化和Number相关的方法使用和源码解析。函数柯里化chain:创建一个函数链并依次执行使用说明功能描述:用于创建一个函数链,该链依次执行一系列函数,每个函数的输出......
  • 关于学习VUE源码的感受! 学习VUE源码最好的方式 !!!
    仓库地址仓库whoelse666mini-vue崔学社mini-vue文章导航Vue3源码实战课|构建你自己的Vue3|掌握源码最有效的学习方法就是手写一遍!Vue3源码实战课阮一峰推荐最佳学习vue3源码的利器-mini-vue学习源码经历过程vue从出来到现在也有好些年了,相信几乎所所有从事......
  • 全网首一份!你最需要的PPTP MS-CHAP V2 挑战响应编程模拟计算教程!代码基于RFC2759,附全
    本文基于网络密码课上的实验本来想水一水就过去,代码就网上找找,不行就GPT写,但是!一份都找不到,找到的代码都是跑不了的,总会是就是乱七八糟。所以准备认真的写一份。代码编译成功的前提是要预先装好openssl库!本随笔主要有三个内容:编写程序,模拟计算NTResponse、AuthenticatorRespo......
  • 64-SpringBoot源码分析
    Starter是什么?我们如何使用这些Starter?为什么包扫描只会扫描核心启动类所在的包及其子包?在SpringBoot启动过程中,是如何完成自动配置的?内嵌Tomcat是如何创建并启动的?引入了web场景对应的Starter,SpringMVC是如何完成自动装配的?1.源码环境构建https://gith......
  • 一对一视频聊天源码,水印功能实现方案不容错过
    一对一视频聊天源码,水印功能实现方案不容错过一、基于原图生成水印图片(后端)这种方案就是将原图片添加水印之后生成了新图片,后续在一对一视频聊天源码前端页面进行展示是后端接口不返回原图片,而是返回带有水印的图片即可。这种方式最大的优点就是安全,因为水印图......
  • 一对一视频源码,实现限流对优化系统性能尤为重要
    一对一视频源码,实现限流对优化系统性能尤为重要,主要内容为滑动日志,令牌桶,漏桶三种限流算法的Java实现获取连接许可的接口一、滑动日志用一个有序集合来存储所有请求的时间戳,以空间换时间的方式来简化计算二、令牌桶利用延迟计算来维护令牌数量三、漏桶漏桶算法原理类似......
  • 一对一视频聊天源码,JDBC数据源隔离方法
    在开发一对一视频聊天源码时,数据隔离需要对DB,Redis,RabbitMQ进行数据隔离,接下来主要介绍一下JDBC数据源隔离方法。通过实现Spring动态数据源AbstractRoutingDataSource,通过ThreadLocal识别出来压测数据,如果是压测数据就路由到影子库,如果是正常流量则路由到主库,通过流量识别的改......
  • 一对一视频源码,Redis数据源还能这样隔离
    一对一视频源码,Redis数据源还能这样隔离通过ThreadLocal识别出来压测数据,自定义Redis的主键的序列化方式,如果是压测数据则在主键后面加上后缀,这样就可以通过不同主键将Redis数据进行隔离。一、实现key序列化publicclassKeyStringRedisSerializerextendsStringRedis......
  • kubernetes 源码开启 go work 模式
    为了更方便进行go项目多模块管理,go社区在gomod之后引入了go workspaces模式。kubernetes社区最近在 kubernetes源码中启用 go workspaces模式。go提出 go workspaces模式的issue,和社区 thockin 的关注 cmd/go:supportvendoringinworkspacemode·Is......
  • kubernetes DeploymentController 源码解析
    DeploymentController对象从 NewDeploymentController方法开始创建,我们首先看这个方法1//NewDeploymentControllercreatesanewDeploymentController.2funcNewDeploymentController(ctxcontext.Context,dInformerappsinformers.DeploymentInformer,rsInformer......