首页 > 数据库 >MySQL 的慢 SQL 如何优化

MySQL 的慢 SQL 如何优化

时间:2024-04-01 09:24:38浏览次数:31  
标签:info name SQL 查询 索引 user MySQL 优化 id

索引可以提高数据检索的效率,降低数据库的IO成本。

MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。

MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。

一、导致SQL执行慢的原因

1. 硬件问题。如网络速度慢,内存不足,I/O吞吐量小,磁盘空间满了等。

2. 没有索引或者索引失效。(一般在互联网公司,DBA会在半夜把表锁了,重新建立一遍索引,因为当你删除某个数据的时候,索引的树结构就不完整了。所以互联网公司的数据做的是假删除.一是为了做数据分析,二是为了不破坏索引 )

3. 数据过多(分库分表)

4. 服务器调优及各个参数设置(调整my.cnf)

二、分析原因时,一定要找切入点

1. 先观察,开启慢查询日志,设置相应的阈值(比如超过3秒就是慢SQL),在生产环境跑上个一天过后,看看哪些SQL比较慢。
2. Explain和慢SQL分析。比如SQL语句写的烂,索引没有或失效,关联查询太多(有时候是设计缺陷或者不得以的需求)等等。3. Show Profile是比Explain更近一步的执行细节,可以查询到执行每一个SQL都干了什么事,这些事分别花了多少秒。4. 找DBA或者运维对MySQL进行服务器的参数调优。

三、什么是索引?

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。我们可以简单理解为:快速查找排好序的一种数据结构。

Mysql索引主要有两种结构:B+Tree索引和Hash索引。我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。

索引如图所示:

 

 

最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13……非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

四、Explain分析

前文铺垫完成,进入实操部分,先来插入测试需要的数据:

CREATE TABLE user_info (
id BIGINT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(50) NOT NULL DEFAULT ”,
age INT(11) DEFAULT NULL,
PRIMARY KEY (id),
KEY name_index (name)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO user_info (name, age) VALUES (‘xys’, 20);
INSERT INTO user_info (name, age) VALUES (‘a’, 21);
INSERT INTO user_info (name, age) VALUES (‘b’, 23);
INSERT INTO user_info (name, age) VALUES (‘c’, 50);
INSERT INTO user_info (name, age) VALUES (‘d’, 15);
INSERT INTO user_info (name, age) VALUES (‘e’, 20);
INSERT INTO user_info (name, age) VALUES (‘f’, 21);
INSERT INTO user_info (name, age) VALUES (‘g’, 23);
INSERT INTO user_info (name, age) VALUES (‘h’, 50);
INSERT INTO user_info (name, age) VALUES (‘i’, 15);

CREATE TABLE order_info (
id BIGINT(20) NOT NULL AUTO_INCREMENT,
user_id BIGINT(20) DEFAULT NULL,
product_name VARCHAR(50) NOT NULL DEFAULT ”,
productor VARCHAR(30) DEFAULT NULL,
PRIMARY KEY (id),
KEY user_product_detail_index (user_idproduct_nameproductor)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, ‘p1’, ‘WHH’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, ‘p2’, ‘WL’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, ‘p1’, ‘DX’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, ‘p1’, ‘WHH’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, ‘p5’, ‘WL’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, ‘p3’, ‘MA’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, ‘p1’, ‘WHH’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, ‘p1’, ‘WHH’);
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, ‘p8’, ‘TE’);

 

初体验,执行Explain的效果:

 

 

索引使用情况在possible_keys、key和key_len三列,接下来我们先从左到右依次讲解。

1. id

--id相同,执行顺序由上而下

 

 

–id不同,值越大越先被执行

 

 

2. select_type

可以看id的执行实例,总共有以下几种类型:
SIMPLE: 表示此查询不包含 UNION 查询或子查询
PRIMARY: 表示此查询是最外层的查询
SUBQUERY: 子查询中的第一个 SELECT
UNION: 表示此查询是 UNION 的第二或随后的查询
DEPENDENT UNION:UNION 中的第二个或后面的查询语句, 取决于外面的查询
UNION RESULT, UNION 的结果
DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.
DERIVED:衍生,表示导出表的SELECT(FROM子句的子查询)

3. table
table表示查询涉及的表或衍生的表:

 

 

id为1的<derived2>的表示id为2的u和o表衍生出来的。

4. type

type 字段比较重要,它提供了判断查询是否高效的重要依据依据。通过 type 字段,我们判断此次查询是 全表扫描 还是 索引扫描等。

type 常用的取值有:

system: 表中只有一条数据, 这个类型是特殊的 const 类型。

const: 针对主键或唯一索引的等值查询扫描,最多只返回一行数据。const 查询速度非常快, 因为它仅仅读取一次即可。例如下面的这个查询,它使用了主键索引,因此 type 就是 const 类型的:explain select * from user_info where id = 2;

eq_ref: 此类型通常出现在多表的 join 查询,表示对于前表的每一个结果,都只能匹配到后表的一行结果。并且查询的比较操作通常是 =,查询效率较高。例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;

ref: 此类型通常出现在多表的 join 查询,针对于非唯一或非主键索引,或者是使用了 最左前缀 规则索引的查询。例如下面这个例子中, 就使用到了 ref 类型的查询:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5

range: 表示使用索引范围查询,通过索引字段范围获取表中部分数据记录。这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中。例如下面的例子就是一个范围查询:explain select * from user_info  where id between 2 and 8;

index: 表示全索引扫描(full index scan),和 ALL 类型类似,只不过 ALL 类型是全表扫描,而 index 类型则仅仅扫描所有的索引, 而不扫描数据。index 类型通常出现在:所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据。当是这种情况时,Extra 字段 会显示 Using index。

ALL: 表示全表扫描,这个类型的查询是性能最差的查询之一。通常来说, 我们的查询不应该出现 ALL 类型的查询,因为这样的查询在数据量大的情况下,对数据库的性能是巨大的灾难。如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免。

通常来说, 不同的 type 类型的性能关系如下:

 

 

ALL 类型因为是全表扫描, 因此在相同的查询条件下,它是速度最慢的。而 index 类型的查询虽然不是全表扫描,但是它扫描了所有的索引,因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据,因此可以过滤部分或大部分数据,因此查询效率就比较高了。

5. possible_keys

它表示 mysql 在查询时,可能使用到的索引。注意,即使有些索引在 possible_keys 中出现,但是并不表示此索引会真正地被 mysql 使用到。mysql 在查询时具体使用了哪些索引,由 key 字段决定。

6. key

此字段是 mysql 在当前查询时所真正使用到的索引。比如请客吃饭,possible_keys是应到多少人,key是实到多少人。当我们没有建立索引时:

 

 

建立复合索引后再查询:

 

7. key_len

表示查询优化器使用了索引的字节数,这个字段可以评估组合索引是否完全被使用。

8. ref

这个表示显示索引的哪一列被使用了,如果可能的话,是一个常量。前文的type属性里也有ref,注意区别。

9. rows

rows 也是一个重要的字段,mysql 查询优化器根据统计信息,估算 sql 要查找到结果集需要扫描读取的数据行数,这个值非常直观的显示 sql 效率好坏, 原则上 rows 越少越好。可以对比key中的例子,一个没建立索引钱,rows是9,建立索引后,rows是4。

10. extra

explain 中的很多额外的信息会在 extra 字段显示, 常见的有以下几种内容:

using filesort :表示 mysql 需额外的排序操作,不能通过索引顺序达到排序效果。一般有 using filesort都建议优化去掉,因为这样的查询 cpu 资源消耗大。

using index:覆盖索引扫描,表示查询在索引树中就可查找所需数据,不用扫描表数据文件,往往说明性能不错。

using temporary:查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高,建议优化。

using where :表名使用了where过滤。


五、优化案例

explain select u.*,o.* from user_info u LEFT JOIN  order_info o on u.id=o.user_id;

执行结果,type有ALL,并且没有索引:

开始优化,在关联列上创建索引,明显看到type列的ALL变成ref,并且用到了索引,rows也从扫描9行变成了1行:

这里面一般有个规律是:左链接索引加在右表上面,右链接索引加在左表上面。


六、是否需要创建索引?  

索引虽然能非常高效的提高查询速度,同时却会降低更新表的速度。实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。

 

标签:info,name,SQL,查询,索引,user,MySQL,优化,id
From: https://www.cnblogs.com/shujuyr/p/18107742

相关文章

  • 炸裂:MySQL死锁是什么,如何解决?
    文章很长,且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录博客园版为您奉上珍贵的学习资源:免费赠送:《尼恩Java面试宝典》持续更新+史上最全+面试必备2000页+面试必备+大厂必备+涨薪必备免费赠送:《尼恩技术圣经+高并发系列PDF》,帮你实现技术自由,完成职业升级,薪......
  • 解决 java.sql.SQLException:null,message from Server:"Host 'xxx' is not allowed t
    问题:url中机器地址写127.0.0.1或是localhost时不会发生,但写真实IP就出现此异常,即使从本机运行也会出此错。解决方法:在MySQL控制台,执行以下命令:mysql>usemysql;Databasechangedmysql>updateusersethost='%'whereuser='root';QueryOK,1rowaffected(0.04sec)......
  • linux常用内核优化
    linux内核常用调优参数点击关注......
  • SQL注入攻击与防御详细讲解
    一、SQL注入攻击1.利用单引号绕过过滤        许多应用程序使用单引号来包裹用户输入,以防止SQL注入攻击。然而,攻击者可以通过输入'OR1=1;--来绕过这种过滤。示例:        假设应用程序使用以下代码查询数据库:SELECT*FROMusersWHEREusername='......
  • SQL性能分析工具Explain
    SQL性能分析工具Explain是一个强大的工具,主要用于分析查询语句或执行计划,并提供详细的执行信息。通过Explain,开发人员可以深入理解查询语句的执行过程,找出潜在的性能问题,并针对性地进行优化。 Explain的使用非常简单,只需在需要分析的SQL语句前加上“EXPLAIN”关键字即可。执......
  • MySQL的索引
    索引的创建是非常重要的一环。索引可以显著提高查询性能,但也可能增加写入操作的开销,因此需要根据具体的应用场景和需求来权衡和设计。 索引类型 MySQL支持多种类型的索引,包括: B-TREE索引:最常见的索引类型,大多数存储引擎都支持它。HASH索引:只有MEMORY存储引擎支持。F......
  • 诊断慢SQL根源
    诊断慢SQL的根源通常涉及一系列步骤和方法,包括但不限于以下几个方面:1.**收集慢SQL日志**:  -设置数据库系统的慢查询日志阈值(如MySQL的`long_query_time`),记录执行时间超过指定阈值的SQL语句。  -使用数据库监控工具(如PerconaToolkit、pt-query-digest)定期分析慢查......
  • MySQL如何解决Host is not allowed to connect to this MySQL server
    在运行Androidstudio时,日志中报错HostisnotallowedtoconnecttothisMySQLserver, 解决方案:1、登录MySQL控制台:在电脑下方搜索 2、选择上图中Unicode3、输入MySQL密码4、根据命令mysql>usemysql;Databasechangedmysql>updateusersethost='%'whereuser......
  • PL/SQL的词法单元
    目录字符集标识符分隔符注释oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645PL/SQL块中的每一条语句都必须以分号结束。一个SQL语句可以跨多行,但分号表示该语句的结束:一行中也可以有多条SQL语句,各语句之间以分号......
  • 优化手段
    使用Key对于通过循环生成的列表,应该给列表每一项一个稳定且唯一的key,这个有利于在列表变动时,尽量减少删除,新增,改动元素。使用冻结的对象冻结的对象不会被响应化,应用场景(当一个列表无需变化时可以使用)使用函数式组件在模板中添加functional标记在js中添加functi......