首页 > 数据库 >Python 基于pymongo操作Mongodb学习总结

Python 基于pymongo操作Mongodb学习总结

时间:2024-02-04 10:02:13浏览次数:35  
标签:Python Mongodb collection num visitor print post pymongo id

实践环境

Python 3.6.4

pymongo 4.1.1

pymongo-3.12.3-cp36-cp36m-win_amd64.whl

下载地址:https://pypi.org/simple/pymongo/

代码实践

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import datetime
import random
import pymongo
from pymongo import MongoClient
from bson.objectid import ObjectId



# # # # # # # # # 建立连接
# 方式1
# client = MongoClient() # 使用默认主机和端口连接本地Mongodb服务器

# 方式2:
# client = MongoClient("localhost", 27017)  # 也可以手动指定服务器和端口

# 方式3:采用url
user_name = 'tcems'
password = 'Password123456'

uri = f'mongodb://{user_name}:{password}@polartcems-mrs1.dbsit.sfcloud.local:24000,polartcems-mrs2.dbsit.sfcloud.local:24000,polartcems-mrs3.dbsit.sfcloud.local:24000'
client = MongoClient(uri)


# # # # # # # # # 获取数据库信息
databases = client.list_databases()
for database in databases:
    print(database) # 输出字典,形如:{'name': 'custom_db_name', 'sizeOnDisk': 5001216.0, 'empty': False}

# # # # # # # # # 获取数据库
my_test_db = client.tcems
# my_test_db = client['tcems'] # 如果不支持.属性方式访问(比如test-db),可以考虑使用字典方式访问


# # # # # # # # # 获取当前数据库拥有的集合名称列表
collections = my_test_db.list_collection_names()
print(collections) # 输出名称列表,形如['YiLiuTemHumLog', 'test_collection', ...]

# # # # # # # # # 获取集合
collection = my_test_db.test_collection
# collection = my_test_db['test_collection'] # 如果不支持.属性方式访问(比如test-db),可以考虑使用字典方式访问


# # # # # # # # # 索引
# 创建索引
# collection.create_index([("date", pymongo.ASCENDING)])
# collection.create_index([("field_name", pymongo.ASCENDING)], unique=True) # 创建唯一索引

# # # # # # # # #  集合文档操作
# # # # # # # # # 插入文档
# 逐条插入文档
post = {
    'author': 'Mike',
    'visitor_num': random.randint(0,100),
    'text': 'blog post of Mike!',
    'tags': ['mongodb', 'python', 'pymongo'],
    'date': datetime.datetime.now(tz=datetime.timezone.utc)
}

post_id = collection.insert_one(post).inserted_id  # 注意:insert_one函数返回 pymongo.results.InsertOneResult对象
print(post_id, type(post_id)) # 输出形如:65a881fffa04b0dc0e7a74bc <class 'bson.objectid.ObjectId'>    # 注意,获取的insert_id为 bson.objectid.ObjectId类型

try:
    post['_id'] = post_id
    collection.insert_one(post)  # 运行报错: pymongo.errors.DuplicateKeyError: E11000 duplicate key error collection:...
except pymongo.errors.DuplicateKeyError:
    print('id重复')
    # do something

# 批量插入文档
posts = [
    {
        'author': 'Mike',
        'visitor_num': random.randint(0,100),
        'text': 'blog post of Mike!',
        'tags': ['mongodb', 'python', 'pymongo'],
        'date': datetime.datetime.now(tz=datetime.timezone.utc)
    },
   {
        'author': 'Jack',
        'visitor_num': random.randint(0,100),
        'text': 'blog post of Jack!',
        'tags': ['mongodb', 'python', 'pymongo'],
        'date': datetime.datetime.now(tz=datetime.timezone.utc)
    }
]
res = collection.insert_many(posts) # insert_many函数返回 pymongo.results.InsertManyResult 对象
print(res.inserted_ids) # 获取插入记录的id,形如 [ObjectId('65a9423b782fc7838d729033'), ObjectId('65a9423b782fc7838d729034')]
inserted_ids = res.inserted_ids

# # # # # # # # # 查询文档
# 查询单条文档
res = collection.find_one() # 注意:如果集合中存在记录,则find_one返回字典对象,否则返回None
print(res, type(res))
print(res.get('_id'), str(res.get('_id')))  # 获取插入时自动生成的文档ID

# 查询时指定查询条件
print(collection.find_one({'author': 'Mike'})) # 文档author必须为Mike
print(collection.find_one({'_id': res.get('_id')})) # 按_id查询
print(collection.find_one({'_id': post_id}))  # 注意:_id值类型必须为ObjectId


# 批量查询
# 遍历所有记录
for post in collection.find():
    print(post)   # 此处,post为字典类型
    break

# 只查询满足条件的记录(注意:字典中逗号分隔的多个条件,默认的and关系
for post in collection.find({'visitor_num': {'$gte': 12, '$lte': 18}}): # 查找visitor_num大于等于12小于等于18的文档
    print(post)

for post in collection.find({'author': {'$ne': 'Mike'}}): # 查找 author 不等于 Mike的文档
    print(post)

for post in collection.find({'visitor_num': {'$ne': None}}): # 查找 visitor_num不为null的文档记录
    print(post)

for post in collection.find({'$or':[{'visitor_num':{'$gte':18}},{'author': 'Mike'}]}): # 查找 visitor_num 大于等于18,或者 author 等于 Mike 的文档
    print(post)

for post in collection.find({'visitor_num':{'$in': [58, 90, 41]}}): # 查找 visitor_num 值在数组 [58,90,41]中的文档
    print(post)

for post in collection.find({'author':{'$nin': ['Mike','Jack']}}): # 查找 visitor_num 不在数组 ['Mike','Jack'] 中的文档
    print(post)

  
# 限制返回文档数
for post in collection.find().limit(10): # 仅返回10条文档
    print(post)

# 查询排序
# 单个字段排序
# for post in collection.find().sort('visitor_num'): # 按 visitor_num 升序排序 # 注意:不存在排序字段的文档在有排序字段文档之上
for post in collection.find().sort('visitor_num', pymongo.ASCENDING): # 按 visitor_num 升序排序 pymongo.ASCENDING = 1
    print(post)

# 多字段排序
print('多字段排序1: 按 _id 升序,再按 visitor_num 降序')
for post in collection.find().sort([('_id', 1), ('visitor_num', pymongo.DESCENDING)]):
    print(post)

print('多字段排序2: 按 _id 降序,再按 visitor_num 升序')
for post in collection.find().sort([('_id', -1), ('visitor_num', 1)]):
    print(post)



# 聚合查询
start_time = datetime.datetime(2024, 1, 15, 6, 37, 37, 246000)
end_time = datetime.datetime(2024, 1, 15, 6, 44, 7, 239000)

# 查询当前集合中最大,最小文档ID
for record in collection.aggregate([
    {
        "$group": {
            "_id": None,
            "min_id": {"$min": '$_id'},
            "max_id": {"$max": '$_id'}
        }
    }
]):
    if record: # record为字典类型
        print(record.get('min_id'))
        print(record.get('max_id'))

# 查询当前集合中指定时间范围内最大,最小文档ID
for record in collection.aggregate([
    {
        '$match': {
            'date': {'$gte': start_time, '$lte': end_time}},
    },
    {
        "$group": {
            "_id": None,
            "min_id": {"$min": '$_id'},
            "max_id": {"$max": '$_id'}
        }
    }
]):
    if record: # record为字典类型
        print(record.get('min_id'))
        print(record.get('max_id'))



# 聚合管道
# 查询文档,按visitor_num降序排序,限制返回文档数为10--获取visitor_num top 10的记录
for post in collection.find().sort('visitor_num', pymongo.DESCENDING).limit(10):
    print(post)
# 或者
for post in collection.find().limit(10).sort('visitor_num', pymongo.ASCENDING):
    print(post)

# 分页查询
for post in collection.find().skip(5).limit(10): # skip(N) 跳过前N个文档,等价于mysql查询中的offset 根据limit参数值,返回第N+1条及往后文档
    print(post)


# 统计
# 获取文档总数
print(collection.count_documents({})) # 获取文档总数 # 注意:查询条件 {} 不能少,否则会报错
print(collection.count_documents({'author': 'Jack'})) # 获取author值为Jack的文档总数

# 获取最小值
min_visitor_num = collection.find_one(sort=[('visitor_num', pymongo.ASCENDING)]).get('visitor_num') # 获取最小 visitor_num
print('min_visitor_num', min_visitor_num)

# 获取最大值
max_visitor_num = collection.find_one(sort=[('visitor_num', pymongo.DESCENDING)]).get('visitor_num') # 获取最大 visitor_num
print(collection.find_one(sort=[('visitor_num', pymongo.DESCENDING)]))



# # # # # # # # # 更新文档
# 逐条更新
new_content = {
    'author': 'Json',
    'visitor_num': random.randint(0,100),
    'text': 'blog post of Json!',
    'tags': ['mongodb', 'python', 'pymongo'],
    'date': datetime.datetime.now(tz=datetime.timezone.utc)
}
query_condition = {'_id':  ObjectId('65a4d2b165b14a57a38a1504')}
collection.update_one(query_condition, {'$set': new_content})
print(collection.find_one({'_id': ObjectId('65a4d2b165b14a57a38a1504')})) # 查看更新后的文档

# 批量更新
query_condition = {'visitor_num': None}
collection.update_many(query_condition, {'$set': new_content}) # 批量更新visitor_num值为null的的文档内容为 new_content变量值


# # # # # # # # #  删除文档
# 逐条删除文档
res = collection.delete_one({'_id': post_id}) # 删除指定_id等于 post_id变量值的文档 # 注意:delete_one函数返回 pymongo.results.DeleteResult对象
# print(res.deleted_count, res.raw_result)
if res.deleted_count == 1:
    print('删除成功')

# 批量删除
res = collection.delete_many({'_id': {'$in': inserted_ids}}) # delete_many函数返回 pymongo.results.DeleteResult  对象
print(res.deleted_count) # 输出被删除文档数量

# 删除全部文档
collection.delete_many({})



# # # # # # # # # 删除集合
collection.drop()

说明:

  1. 如果连接用户名和密码包含诸如':', '/', '+''@'保留字符,则使用前应该先进行编码,如下:
from urllib.parse import quote_plus

user_name = quote_plus('@username')
password = quote_plus('test_password+')
host = 'project.example.local'
port = 27017
uri = f'mongodb://{user_name}:{password}@{host}:{port}'
client = MongoClient(uri)
  1. 使用URI建立连接时,URI书写格式分这么几种情况:
  1. 需要验证密码
uri = 'mongodb://user_name:password@host:port/authentication_database'

说明:authentication_database :授权数据库,可选配,默认admin,如果不为admin时,必须显示指明,否则会报类似如下错误:

pymongo.errors.OperationFailure: Authentication failed., full error: {'ok': 0.0, 'errmsg': 'Authentication failed.', 'code': 18, 'codeName': 'AuthenticationFailed'}
  1. 不需要密码验证
uri = 'mongodb://host:port'
  1. 集群模式
uri = 'mongodb://user_name:password@host1:port1,host2:port2,host3:port3,...hostN:portN/authentication_database'
  1. MongoDB中的集合和数据库,都是懒惰地创建的——在第一个文档插入其中时创建的。
    备注:笔者实践时发现,无法自动创建数据库和集合,会提示授权认证失败。
  2. MongoDB中的数据使用JSON样式的文档表示(和存储)。在PyMongo中,使用字典来表示文档。例如,以下字典可能用于表示博客文章:
import datetime
post = {
    "author": "Mike",
    "text": "My first blog post!",
    "tags": ["mongodb", "python", "pymongo"],
    "date": datetime.datetime.now(tz=datetime.timezone.utc),
}

注意,文档可以包含本地Python类型(如datetime.datetime实例),这些类型将自动转换为相应的BSON类型或从相应的BSON类型转换。

  1. 实践时遇到类似如下错误:
pymongo.errors.ConfigurationError: Server at * reports wire version 5, but this version of PyMongo requires at least 6 (MongoDB 3.6).

原因分析:

错误信息提示来看,使用的PyMongo版本与MongoDB服务器的Wire版本不兼容。服务器wire版本为5,而该PyMongo要求至少wire版本6(MongoDB 3.6)

解决方法:

  1. 升级MongoDB服务器:将MongoDB服务器升级到PyMongo所需的版本,即MongoDB 3.6或更高版本。
  2. 降级PyMongo版本:如果不能升级MongoDB服务器,可以尝试降级PyMongo版本,以匹配MongoDB服务器版本。
    笔者实践时选择了降低PyMongo版本为 pymongo-3.12.3-cp36-cp36m-win_amd64.whl

参考链接

https://pymongo.readthedocs.io/en/stable/tutorial.html

https://pymongo.readthedocs.io/en/stable/api/pymongo/cursor.html#pymongo.cursor.Cursor.sort

https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection.count_documents

https://www.mongodb.com/docs/manual/reference/operator/query/

https://www.mongodb.com/docs/manual/reference/operator/aggregation/

https://www.mongodb.com/docs/manual/reference/operator/aggregation-pipeline/

https://www.mongodb.com/docs/manual/reference/operator/aggregation/match/#mongodb-pipeline-pipe.-match

作者:授客

标签:Python,Mongodb,collection,num,visitor,print,post,pymongo,id
From: https://blog.51cto.com/shouke/9576832

相关文章

  • Python elasticsearch-py类库基础用法
    实践环境https://pypi.org/project/elasticsearch/pipinstallelasticsearch==7.6.0离线安装包及依赖包下载地址:https://files.pythonhosted.org/packages/f5/71/45d36a8df68f3ebb098d6861b2c017f3d094538c0fb98fa61d4dc43e69b9/urllib3-1.26.2-py2.py3-none-any.whl#sha256=d8ff9......
  • Python 机器学习 K-近邻算法 鸢尾花种类预测
    ​ K-近邻算法(K-NearestNeighbors,KNN)是一种简单而强大的机器学习算法,适用于分类和回归任务。可以使用scikit-learn库的KNN算法来预测鸢尾花(Iris)的种类。鸢尾花数据集是机器学习领域中常用的一个数据集,包含了150个鸢尾花样本,每个样本有四个特征:萼片长度、萼片宽度、花瓣长度......
  • BeautifulSoup爬虫库应用——Python 页面解析
    爬虫技术作为信息搜集的重要手段,在大数据时代发挥着至关重要的作用。通过网络爬虫,可以高效地从各种在线源头获取大规模、多样化的数据,为大数据分析和应用提供了必要的原始材料。首先,爬虫使得大数据的采集更为全面和及时。网络上存在着庞大的信息资源,包括社交媒体、新闻网站、电子......
  • 工作安排-od-python
    工作安排小明每周上班都会拿到自己的工作清单,工作清单内包含n项工作,每项工作都有对应的耗时时长(单位h)和报酬,工作的总报酬为所有已完成工作的报酬之和。那么请你帮小明安排一下工作,保证小明在指定的工作时间内工作收入最大化。输入描述输入的第一行为两个正整数T,n。T代表工作......
  • Python随机波动模型Stochastic volatility,SV随机变分推断SVI分析标普500指数股票价格
    全文链接:https://tecdat.cn/?p=33809原文出处:拓端数据部落公众号随机波动模型(Stochasticvolatilitymodels)经常被客户用来对股票价格随时间的变动性进行建模。波动性(volatility)是随时间的对数收益的标准差。与假设波动性恒定不变不同,随机波动模型具有隐变量参数,可以在每个时刻......
  • 狼羊过河-od-python
    羊、狼、农夫都在岸边,当羊的数量小于狼的数量时,狼会攻击羊,农夫则会损失羊。农夫有一艘容量固定的船,能够承载固定数量的动物。要求求出不损失羊情况下将全部羊和狼运到对岸需要的最小次数。只计算农夫去对岸的次数,回程时农夫不会运送羊和狼。备注:农夫在或农夫离开后羊的数量大......
  • (python)代码学习||2024.2.3||题目是codewars上的【Validate Sudoku with size `NxN`
    题目的要求是写一个Sudoku类,类中要有一个实例函数判断传给对象的二维数组是否符合数独规则题目链接:https://www.codewars.com/kata/540afbe2dc9f615d5e000425/python下面是写完题后看到的别人的解决方法fromitertoolsimportchainclassSudoku(object):def__init__......
  • 设计一个学生管理系统(Python类的使用案例)
    设计一个学生管理系统设计学生类(Student)属性:姓名(name)、学号(student_id)、年龄(age)、成绩(grades) 设计学生管理系统类(StudentManagementSystem)属性:学生列表(students)  classStudent:def__init__(self,name,id,age,grades):self.name=namesel......
  • Python数据结构与算法06——树与树算法
    二叉树classNode(object):def__init__(self,val,lchild=None,rchild=None):self.val=valself.lchild=lchildself.rchild=rchildclassTree(object):def__init__(self):self.root=Nonedefadd(self,item):no......
  • 求最大数字-od-python
    求最大数字题目给定一个由纯数字组成以字符串表示的数值,现要求字符串中的每个数字最多只能出现2次,超过的需要进行删除;删除某个重复的数字后,其它数字相对位置保持不变。如34533,数字3重复超过2次,需要删除其中一个3,删除第一个3后获得最大数值4533请返回经过删除操作......