首页 > 数据库 >顶级大厂Quora如何优化数据库性能?

顶级大厂Quora如何优化数据库性能?

时间:2023-11-29 22:44:06浏览次数:59  
标签:缓存 数据库 Quora 查询 大厂 分片 MySQL id

Quora 的流量涉及大量阅读而非写入,一直致力于优化读和数据量而非写。

0 数据库负载的主要部分

  • 读取
  • 数据量
  • 写入

1 优化读取

1.1 不同类型的读需要不同优化

① 复杂查询,如连接、聚合等

在查询计数已成为问题的情况下,它们在另一个表中构建了计数,以便它们可以直接读取计数值而非计算计数。

② 大型扫描

他们使用 LIMIT 改变它或使用分页

③ 模式与查询之间不匹配

若:

  • 无很好的索引
  • 或索引没有足够的列
  • 或索引中的列顺序对查询来说不是最佳

则查询可能很慢,可能对数据库造成很大负载。

这种情况下,通常会修改索引以对查询进行优化。 有时查询也可修改以对索引进行优化。如:

  • 删除 select 子句中不必要的列(特别是索引中不存在的列)
  • 删除 order by 子句,改为在客户端上排序(MySQL CPU 一般比客户端 CPU 更宝贵)
  • 若该查询提供的功能不再重要,可完全删除查询

1.2 高 QPS 查询

即使使用了优化的 SQL 和良好的模式,高 QPS查询也给数据库带来很大负载。有时可能表示缓存效率低下(甚至没缓存)。

① 低效的缓存是否导致了高 QPS 查询?

缓存通常用于减少数据库 QPS。缓存键的选择可以极大地影响缓存的效率:

  • 若缓存键过于具体或狭窄,可能导致数据库出现高 QPS
  • 若缓存键太宽泛,每次查询都会从数据库中拉取大量数据

② 对用户语言表的查询

我们有一个表跟踪用户使用的语言信息。通常会查询数据库以查看用户 U 是否使用语言 L。使用(uid,language_id)作为缓存键看起来合理。如缓存未命中,将为该 uid 和 language_id 查询数据库表。

因此,将缓存键更改为仅使用 uid 确实有意义,缓存值将是有关用户使用的所有语言的信息。

以上述方式更改缓存键,会增加从库表中每次查询获取的数据量,但它将 QPS 减少超过 90%。大多数用户只使用一或几种语言。 因此,大多数情况,新的查询并没有拉取比以前更多的数据,这是一个显然的优化!

③ 查询 A2A(ask to answer)表

这里我们处理 3 个实体间的关系,即用户(谁提问或关注问题)、问题和回答者,这比 2 个实体之间的关系更不常见。

通常产品逻辑是查询:

  • 用户已请求过的所有回答者,使用缓存键 (question_id, user_id)
  • 请求过相同回答者回答一个问题的所有用户,使用缓存键 (question_id, answerer_id)

综上,A2A 表的 QPS 非常高,这意味着上述缓存效果并不明显。上述两个缓存都在使用 2 个实体作为缓存键question_id 和 user_id(可以是提问者或回答者)。

潜在缓存键数量巨大,因为它是问题数和用户数的乘积,其中只有很少的组合实际上在表中有数据。所以它可看作一个稀疏的数据集,有2维。

大多数问题的 A2A 请求数量相对较少,但有少数问题的 A2A 数量要多得多。因此,添加额外缓存,该缓存包含问题的 A2A,最多限制为 N 个,以便我们捕获大多数问题。 该缓存的键只是 question_id。 如缓存列表大小小于N,我们知道缓存是完整的。 否则,缓存不完整,我们不会使用缓存。

这额外缓存帮助显著减少 A2A 表上的 QPS(在 50% 到 66% 的范围内)。 还对产品逻辑进行了其他更改,以提高效率,但 QPS 的减少大部分来自额外缓存。

1.3 一维数据集中的稀疏数据

Quora 在缓存方面经常遇到的另一个问题是:稀疏一维数据集。如可能需要查询数据库,看某问题是否需重定向到另一问题(如同一个问题被重新发布,就可能发生这种情况)。

绝大多问题不需要重定向,所以 Quora 只会获取几个“重定向”,而大量“不重定向”。

当他们只是缓存了 question_id ,缓存中就会填满不用,只有几个重定向。 这在缓存中占用大量空间,且由于“重定向”数量如此稀疏,也会导致大量缓存未命中。

相反,他们开始缓存范围。 如 question id 123–127的任一问题都没重定向,那么他们会将该范围缓存为所有问题均为 No,而不是缓存每个单独的 question id。

这大大降低此类查询的数据库负载,QPS 下降 90%。

2 优化表占用空间

由于以下几个原因,表大小很重要:

  • 存储更多数据的成本更高
  • 随表增长,适应数据库缓冲池的数据百分比会变小,即IO会逐渐增加,性能会逐渐下降
  • 备份和恢复时间会随表大小线性增长。虽然备份是从 MySQL 副本完成的,但我们也会从副本读数据。在备份期间,MySQL副本性能略有下降
  • 随表增长,备份大小也在增长,导致备份存储成本随时间增长

显然,对不需要永久存储的数据,制定最佳保留策略有助减少表大小 —— 使用 MyRocks 减少表大小

  • 有一些表对于表所有者来说无法接受任何数据的删除。为此研究使用 MyRocks 来减小空间使用
  • MySQL 中的表可能使用更复杂的模式和查询。 所以他们希望谨慎使用 MyRocks。 作为分片项目的一部分,已对 MySQL 中最大的表进行分片,这是在 MySQL 在 Quora 的分片中记录
  • 此表是基于自增列范围进行分片的,与基于时间的分片接近,因为自增列值随时间增加
  • 大多数查询访问最近的分片。 包含 18 个月以上旧数据的较旧分片对日常业务相对不太关键

因此,他们决定按如下方式将较旧的分片移至 MyRocks。 有个工具可将 MySQL 表从一个 MySQL 主服务器移动到另一个主服务器。 每个分片实际上是一个 MySQL 表。 他们能够使用该工具按如下方式将包含旧数据的 MySQL 分片转换为 MyRocks 分片:

  • 在 MyRocks 主服务器上使用相同的模式创建一个新的空表,但使用 RocksDB 存储引擎
  • 使用该工具复制数据并从 MySQL 主服务器重放binlog(二进制日志)到 MyRocks 主服务器。 (该工具已被修改为跳过在目标主机上创建表,因为它已经在前一步中创建过。)
  • 执行阴影读取测试以验证 MyRocks 分片返回的结果与 MySQL 分片的结果相同。
  • 将流量切换到 MyRocks 分片。 (这类似于我们在将 MySQL 表从一个 MySQL 主服务器移动到另一个 MySQL 主服务器时执行的切换。 源主机上的表被重命名以停止新写入,然后在重放赶上后,该表的流量会切换到目标主机。)
  • 对于非键值存储表使用 MyRocks 是我们的一个重大举措。 根据表的不同,空间使用量的减少也有差异。 对于上面提到的第一个表,我们看到每个已移动的分片使用的空间减少了 80% 以上! 对于第二个表,我们看到每个已移动的分片使用的空间只减少了约 50-60%

3 优化写入

有时复制延迟警报,因为 MySQL复制默认情况下会在副本上串行重放主服务器上的并发写。在主服务器上并行写入而在副本上串行重放写入并不适合扩展写入,特别是如果他们使用带多核 CPU 的机器。

MySQL 提供两种方法实现这点,如下所述。两种方法中都需使用 slave_parallel_workers 配置并行度。

  1. slave_parallel_type=LOGICAL_CLOCK(从 MySQL 8.0.26 开始为 replica_parallel_type)
  • MySQL 5.7开始可用。即使所有表都在同一逻辑数据库中,它也可以在副本上并行执行写。
  1. slave_parallel_type=DATABASE(从 MySQL 8.0.26 开始为 replica_parallel_type)
  • 这需要表位于多个逻辑数据库中才能并行执行写
  • 增强存储在 zk 中的数据库配置,以跟踪表所在的逻辑数据库。将此信息保存在 zk 而非代码库或静态配置中,允许动态更改现有表的逻辑数据库。大多数表都位于默认逻辑数据库,因此只需要为不在默认逻辑数据库中的表保留此信息
  • MySQL alter table 语句可用于更改表的逻辑数据库,如 alter table <logical_db1>.table rename <logical_db2>.mytable。 它不复制数据,只是将底层 ibd 文件从一个目录移动到另一个目录,速度很快。移动表后,我们还会在 zk 更新数据库配置,以便应用程序可找到该表
  • 他们将一个表移动到其自己的逻辑数据库并启用并行复制。有助减少包含该表的 MySQL 副本上的复制延迟。

4 结论

学习了世界级大厂如何使用各种技术的组合来优化数据库中的读取、写入和空间使用。你们公司如何优化的呢?欢迎和我一起交流。

参考:

本文由博客一文多发平台 OpenWrite 发布!

标签:缓存,数据库,Quora,查询,大厂,分片,MySQL,id
From: https://www.cnblogs.com/JavaEdge/p/17866096.html

相关文章

  • 第十三周Linux教材第十四章学习笔记——MySQL数据库系统
    MySQL数据库系统MySQL是一个广泛使用的关系型数据库管理系统(RDBMS),它是开源的,支持多用户和多线程。14.1基础知识1.数据库基础概念数据库(Database):**数据库是一个包含相关数据的集合,并提供了对这些数据的有效管理和访问。表(Table):**表是数据库中的基本数据结构,用于存储相关......
  • openGauss学习笔记-134 openGauss 数据库运维-例行维护-检查操作系统参数
    openGauss学习笔记-134openGauss数据库运维-例行维护-检查操作系统参数134.1检查办法通过openGauss提供的gs_checkos工具可以完成操作系统状态检查。前提条件当前的硬件和网络环境正常。各主机间root互信状态正常。只能使用root用户执行gs_checkos命令。操作步骤以r......
  • Oracle数据库 使用存储过程判断索引是否存在,再删除索引
    不多废话DECLAREindex_countNUMBER;BEGIN--判断索引UK_TEST_2是否存在SELECTCOUNT(*)INTOindex_countFROMuser_indexesWHEREindex_name='UK_TEST_2';IFindex_count>0THENEXECUTEIMMEDIATE'DROPINDEXU......
  • 大型数据库实验八--Flink初级编程实践
    ......
  • 文档型数据库:非结构化数据存储的最佳实践
    在当今数字化时代,数据的多样性和不断增长使得有效管理和存储变得尤为关键。传统的关系型数据库在处理结构化数据上表现出色,但随着非结构化数据的涌现,它们逐渐显得力不从心。文档型数据库(MongoDB、SequoiaDB等文档型数据库代表)作为一种新型的数据库范式,以其灵活性和高效性,成为解决非......
  • python连接数据库(连MySQL)
    Python操作和连接数据库原创 阳阳 Python小例子 2023-10-1109:20 发表于湖北在Python中,你可以使用不同的库来操作和连接数据库,最常用的是sqlite3、MySQLdb和psycopg2。使用sqlite3连接和操作SQLite数据库:import sqlite3# 连接数据库conn = sqlite3.connect('......
  • MySQL Shell连接数据库报MySQL Error 1045 (28000)错误浅析
    这里简单总结一下mysqlshell访问数据库时报MySQLError1045(28000):Accessdeniedforuser'root'@'::1'(usingpassword:YES)的原因以及如何解决这个问题这里测试的环境为MySQL8.0.35,我们先来看看报错案例:$mysqlsh-hlocalhost-P7306-uroot-pPleaseprovidethep......
  • Java开发者的Python快速实战指南:探索向量数据库之文本搜索
    前言如果说Python是跟随我的步伐学习的话,我觉得我在日常开发方面已经没有太大的问题了。然而,由于我没有Python开发经验,我思考着应该写些什么内容。我回想起学习Java时的学习路线,直接操作数据库是其中一项重要内容,无论使用哪种编程语言,与数据库的交互都是不可避免的。然而,直接操作......
  • 【Flask使用】第7篇:Flask数据库使用。0基础md文档集合(附代码,可自取)
    本文的主要内容:flask视图&路由、虚拟环境安装、路由各种定义、状态保持、cookie、session、模板基本使用、过滤器&自定义过滤器、模板代码复用:宏、继承/包含、模板中特有变量和函数、Flask-WTF表单、CSRF、数据库操作、ORM、Flask-SQLAlchemy、增删改查操作、案例、蓝图、单元测......
  • 聊聊分布式 SQL 数据库Doris(八)
    稀疏索引密集索引:文件中的每个搜索码值都对应一个索引值,就是叶子节点保存了整行.稀疏索引:文件只为索引码的某些值建立索引项.稀疏索引的创建过程包括将集合中的元素分段,并给每个分段中的最小元素创建索引。在搜索时,先定位到第一个大于搜索值的索引的前一个索引,然后从该索引所在......