首页 > 数据库 >Redis 缓存满了怎么办?

Redis 缓存满了怎么办?

时间:2023-08-29 09:25:48浏览次数:47  
标签:缓存 maxmemory Redis 键值 内存 LRU 淘汰 怎么办

Redis 缓存使用内存来保存数据,随着需要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,应该怎么办?本篇文章接下来就来聊聊缓存满了之后的数据淘汰机制。

值得注意的是,在 Redis 中 过期策略 和 内存淘汰策略 是两个完全不同的概念。Redis 过期策略指的是 Redis 使用哪种策略,来删除已经过期的键值对;而内存淘汰机制指的是当 Redis 运行内存已经超过设置的最大内存之后,将采用什么策略来删除符合条件的键值对,以此来保障 Redis 高效的运行

Redis 最大运行内存

只有在 Redis 的运行内存达到了某个阀值,才会触发内存淘汰机制,这个阀值就是我们设置的最大运行内存,此值在 Redis 的配置文件中可以找到,配置项为 maxmemory

内存淘汰执行流程,如下图所示:

查询最大运行内存

我们可以使用命令 config get maxmemory 来查看设置的最大运行内存,命令如下:

127.0.0.1:6379> config get maxmemory
1) "maxmemory"
2) "0"

我们发现此值竟然是 0,这是 64 位操作系统默认的值,当 maxmemory 为 0 时,表示没有内存大小限制。

注意:32 位操作系统,默认的最大内存值是 3GB。

内存淘汰策略

查看 Redis 内存淘汰策略

我们可以使用 config get maxmemory-policy 命令,来查看当前 Redis 的内存淘汰策略,命令如下:

127.0.0.1:6379> config get maxmemory-policy
1) "maxmemory-policy"
2) "noeviction"

 

可以看出此 Redis 使用的是 noeviction 类型的内存淘汰机制,它表示当运行内存超过最大设置内存时,不淘汰任何数据,但新增操作会报错。

内存淘汰策略分类

早期版本的 Redis 有以下 6 种淘汰策略:

  1. noeviction:不淘汰任何数据,当内存不足时,新增操作会报错,Redis 默认内存淘汰策略;
  2. allkeys-lru:淘汰整个键值中最久未使用的键值;
  3. allkeys-random:随机淘汰任意键值;
  4. volatile-lru:淘汰所有设置了过期时间的键值中最久未使用的键值;
  5. volatile-random:随机淘汰设置了过期时间的任意键值;
  6. volatile-ttl:优先淘汰更早过期的键值。

在 Redis 4.0 版本中又新增了 2 种淘汰策略:

  1. volatile-lfu:淘汰所有设置了过期时间的键值中,最少使用的键值;
  2. allkeys-lfu:淘汰整个键值中最少使用的键值。
其中 allkeys-xxx 表示从所有的键值中淘汰数据,而 volatile-xxx 表示从设置了过期键的键值中淘汰数据。

修改 Redis 内存淘汰策略

设置内存淘汰策略有两种方法,这两种方法各有利弊,需要使用者自己去权衡。

  • 方式一:通过“config set maxmemory-policy 策略”命令设置。它的优点是设置之后立即生效,不需要重启 Redis 服务,缺点是重启 Redis 之后,设置就会失效。
  • 方式二:通过修改 Redis 配置文件修改,设置“maxmemory-policy 策略”,它的优点是重启 Redis 服务后配置不会丢失,缺点是必须重启 Redis 服务,设置才能生效。

内存淘汰算法

从内存淘汰策略分类上,我们可以得知,除了随机删除和不删除之外,主要有两种淘汰算法:LRU 算法和 LFU 算法

LRU 算法

LRU 全称是 Least Recently Used 译为最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。

1. LRU 算法实现

LRU 算法需要基于链表结构,链表中的元素按照操作顺序从前往后排列,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可。

2. 近 LRU 算法

Redis 使用的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是给现有的数据结构添加一个额外的字段,用于记录此键值的最后一次访问时间,Redis 内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。

3. LRU 算法缺点

LRU 算法有一个缺点,比如说很久没有使用的一个键值,如果最近被访问了一次,那么它就不会被淘汰,即使它是使用次数最少的缓存,那它也不会被淘汰,因此在 Redis 4.0 之后引入了 LFU 算法,下面我们一起来看。

LFU 算法

LFU 全称是 Least Frequently Used 翻译为最不常用的,最不常用的算法是根据总访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

LFU 解决了偶尔被访问一次之后,数据就不会被淘汰的问题,相比于 LRU 算法也更合理一些。

在 Redis 中每个对象头中记录着 LFU 的信息,源码如下:

typedef struct redisObject {
    unsigned type:4;
    unsigned encoding:4;
    unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
                            * LFU data (least significant 8 bits frequency
                            * and most significant 16 bits access time). */
    int refcount;
    void *ptr;
} robj;

在 Redis 中 LFU 存储分为两部分,16 bit 的 ldt(last decrement time)和 8 bit 的 logc(logistic counter)。

  1. logc 是用来存储访问频次,8 bit 能表示的最大整数值为 255,它的值越小表示使用频率越低,越容易淘汰;
  2. ldt 是用来存储上一次 logc 的更新时间。

总结

综上所述我们了解到,Redis 内存淘汰策略和过期回收策略是完全不同的概念,内存淘汰策略是解决 Redis 运行内存过大的问题的,通过与 maxmemory 比较,决定要不要淘汰数据,根据 maxmemory-policy 参数,决定使用何种淘汰策略,在 Redis 4.0 之后已经有 8 种淘汰策略了,默认的策略是 noeviction 当内存超出时不淘汰任何键值,只是新增操作会报错。

 

原文链接:https://zhuanlan.zhihu.com/p/648553216

 

 

 

 

 

 

 

 

 

标签:缓存,maxmemory,Redis,键值,内存,LRU,淘汰,怎么办
From: https://www.cnblogs.com/fengjian2016/p/17663853.html

相关文章

  • redis的2种持久化方式:aof和rdb
    redis的rdb和aof持久化方式的区别及使用场景原创 陈烨123 java知路 2023-07-0422:25 发表于湖北Redis提供了两种持久化方式:RDB(RedisDatabase)和AOF(AppendOnlyFile)。RDB持久化是通过周期性地将Redis数据集快照写入磁盘上的二进制文件实现的。在触发持久化时,Redis会......
  • Redis 为什么这么快?
    前言  作为一名后端软件工程师,工作中你肯定和Redis打过交道。但是Redis为什么快呢?很多人只能答出Redis因为它是基于内存实现的,但是对于其它原因都是模棱两可。那么今天就一起来看看是Redis为什么快吧:         Redis为什么这么快? 一、基于内......
  • 接口查询性能优化-缓存
    查询性能优化缓存种类mybatis一级缓存mybatis二级缓存本地缓存各个节点的数据不同步分布式缓存redis前端h5的缓存本地缓存session缓存mybatis一级缓存一个方法中对同一个sql,查询了多次当在这个方法上加@transactional后续的查......
  • vite不支持@怎么办?
    import{defineConfig}from'vite';importvuefrom'@vitejs/plugin-vue';constpath=require('path');exportdefaultdefineConfig({plugins:[vue()],define:{'process.env':{},},resolve:{......
  • Redis数据持久化介绍
    Redis存储配置数据持久化,开启aof后,配置了aof重写规则,但aof文件仍然持续增长,当aof数据文件增长过大时,需要进行手动清理。本文意为手动清理aof文件提供帮助。同时对rdb和aof数据存储进行说明。1. Redis数据持久化介绍1.1. RDB数据存储RDB(RedisDatabase)通过快照的形式将数据保......
  • Python分享之redis(3)
    3、List操作redis中的List在在内存中按照一个name对应一个List来存储lpush(name,values)#在name对应的list中添加元素,每个新的元素都添加到列表的最左边r.lpush("list_name",2)r.lpush("list_name",3,4,5)#保存在列表中的顺序为5,4,3,2rpush(name,values)#同lpush,但每个新的元素......
  • pycharm光标变粗怎么办
    在写代码时可能不经意间按到了某个键 光标就变成这样了 我们只需要点击键盘上的右上角的“Insert”(有可能键盘不一样,但只要找到“Insert”就可以了)即可解决 ......
  • Redis缓存高可用集群(3.1)
    1、Redis集群方案比较哨兵模式在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master,哨兵的配置略微复杂,并且性能和高可用性等各方面表现一般,特别是在主从切换的瞬间存在访问瞬断的情况......
  • Redis从入门到放弃(11):雪崩、击穿、穿透
    1、前言Redis作为一款高性能的缓存数据库,为许多应用提供了快速的数据访问和存储能力。然而,在使用Redis时,我们不可避免地会面对一些常见的问题,如缓存雪崩、缓存穿透和缓存击穿。本文将深入探讨这些问题的本质,以及针对这些问题的解决方案。2、缓存雪崩2.1、问题描述在某个时间......
  • docker 启动redis 启动配置文件可以去网上查找一篇
    dockerrun--privileged=true-d--nameredis-p6379:6379-v/Users/zs/docker/redis/conf/redis.conf:/etc/redis/redis.conf-v/Users/zs/docker/redis/data:/dataredisredis-server/etc/redis/redis.conf   configurl参考如下 https://blog.csdn.net/xuyan......