首页 > 数据库 >Databricks Cluster vs SQL Warehouses - SuperOutlier

Databricks Cluster vs SQL Warehouses - SuperOutlier

时间:2023-07-27 12:34:07浏览次数:41  
标签:Warehouses Databricks Cluster Azure SQL Warehouse Data

Forward:

https://www.superoutlier.tech/databricks-cluster-vs-sql-warehouses/

 

If you are using a Databricks premium account, you see SQL personal along with Data Engineering and Machine Learning.

If you are using Data Engineering or Machine Learning, you will be launching Clusters (Interactive or Job), but when you are using SQL Persona, you will notice SQL Warehouse (a.k.a) SQL Endpoints instead of standard Databricks clusters.

This article quickly summarizes the differences between a Databricks Cluster and SQL Warehouse.

Databricks Engineering Cluster

Databricks Engineer Cluster is a cloud-based data processing platform that is designed for big data processing and analytics. It offers a unified analytics engine that supports different types of workloads. Databricks Engineer Cluster can handle both structured and unstructured data and can be integrated with other cloud services, such as Azure Data Lake Storage, Azure Blob Storage, and Amazon S3. There are some summary below:

  • Databricks Engineer Cluster is built on top of Apache Spark, an open-source distributed computing engine that is optimized for processing large-scale data.
  • The platform uses a cluster-based architecture, where multiple virtual machines are connected to form a cluster. The size and configuration of the cluster can be adjusted based on the workload requirements.
  • Databricks Engineer Cluster supports multiple programming languages, including Python, Scala, R, and SQL. The platform provides a notebook interface that allows users to write and execute code in a collaborative environment.
  • The platform supports both batch processing and real-time processing. For batch processing, users can submit Spark jobs that process data in bulk. For real-time processing, users can create streaming applications that process data as it arrives.
  • Databricks Engineer Cluster can be integrated with other cloud services, such as Azure Data Lake Storage, Azure Blob Storage, and Amazon S3. It also supports data sources such as Hadoop Distributed File System (HDFS), Apache Cassandra, and Apache Kafka.

Databricks SQL Data warehouse

SQL Data Warehouse Cluster is a cloud-based data warehousing solution that is designed for large-scale data analytics and reporting.

  • SQL Data Warehouse Cluster is built on top of the Azure SQL Database, a cloud-based relational database management system (RDBMS) that is optimized for handling large datasets.
  • The solution uses a distributed architecture, where multiple nodes are connected to form a cluster. The size and configuration of the cluster can be adjusted based on the workload requirements.
  • SQL Data Warehouse Cluster supports the T-SQL language, which is a variant of SQL that is optimized for handling large datasets and complex queries. The solution provides a web-based interface, called Azure Portal, that allows users to manage and monitor the cluster.
  • SQL Data Warehouse Cluster is optimized for handling large datasets and can scale up to petabytes of data. The solution uses a columnstore index, which is a type of index that is optimized for handling analytical queries.
  • SQL Data Warehouse Cluster can be integrated with other Azure services, such as Azure Data Factory and Azure Analysis Services, to create end-to-end analytics solutions. It also supports data sources such as Azure Blob Storage, Azure Data Lake Storage, and SQL Server.
Databricks — Create SQL Warehouse

What is difference between them

  • SQL Data Warehouse Cluster is designed for executing SQL commands, while Clusters are built to execute a wide range of commands, including Scala, R, Python, and SQL.
  • One of the key benefits of SQL Data Warehouse Cluster is that it eliminates the overhead of managing libraries such as JAR, PIP, or WHL. On the other hand, Clusters can become overloaded with libraries, which can impact performance.
  • SQL Data Warehouse Cluster simplifies SQL endpoint management and accelerates launch times. In contrast, Cluster configuration can be complex for beginners.
  • When it comes to scaling, SQL Data Warehouse Cluster scales up and down as a Cluster. On the other hand, Cluster scaling is based on nodes, and it can scale up to the maximum range.
  • SQL Data Warehouse Cluster has a Serverless feature (Private Preview) that significantly reduces start time, which is not currently available for Clusters.

The next item is not a difference, it's just a feature available in both.

Both SQL Data Warehouse Cluster and Databricks Engineering Cluster can be used to connect to BI tools like Tableau and have Auto Start capability.

标签:Warehouses,Databricks,Cluster,Azure,SQL,Warehouse,Data
From: https://www.cnblogs.com/apolloextra/p/17584639.html

相关文章

  • quartz.net 配置UseClustering
    Quartz.NET配置UseClustering概述在开始之前,我们需要明确一些概念。Quartz.NET是一个强大且灵活的开源任务调度库,它可以帮助我们在.NET应用程序中实现各种定时任务。而UseClustering则是Quartz.NET提供的一项功能,用于在多个节点之间分配和处理任务。本文将教你如何通过......
  • (五) MdbCluster分布式内存数据库——数据迁移架构及节点扩缩容状态图
    (五)MdbCluster分布式内存数据库——数据迁移架构及节点扩缩容状态图 上一篇:(四)MdbCluster分布式内存数据库——业务消息处理本节主要讨论在系统扩容期间的数据迁移架构及节点的状态图。我们将通过介绍这两部分,慢慢展开复杂的扩缩容流程。下图从左到右,我们增......
  • redis cluster 删除key
    RedisCluster删除Key简介Redis是一个开源的内存数据库,它提供了多种数据结构和丰富的功能。RedisCluster是Redis的分布式解决方案,它允许将数据分布在多个节点上,提高了数据的可用性和性能。在RedisCluster中删除Key是一项常见的操作。本文将介绍如何使用RedisCluster删除Key,并......
  • (四) MdbCluster分布式内存数据库——业务消息处理
    (四)MdbCluster分布式内存数据库——业务消息处理 上篇:(三)MdbCluster分布式内存数据库——节点状态变化及分片调整 离上次更新文章已有快5个月,我还是有点懒。但我们系统的研发并没有因此停下来。下面先简单介绍下MdbCluster最近的一些进展。1.提供了java语......
  • redisCluster 命令
    RedisCluster命令详解引言RedisCluster是Redis分布式解决方案的一部分,它支持自动分片(sharding)和故障转移(failover),使得Redis可以在多个节点上进行数据的存储和操作。本文将介绍RedisCluster的常用命令,并给出相应的代码示例。连接到RedisCluster要连接到RedisCluster,我们需......
  • 【论文解析】EJOR 2011 A clustering procedure for reducing the number of represen
    论文名称:AclusteringprocedureforreducingthenumberofrepresentativesolutionsintheParetoFrontofmultiobjectiveoptimizationproblems动机假设一个三目标优化问题\[\begin{aligned}&\text{Availability:}\max_\thetaJ_1(\theta)=\max_{\theta_p,......
  • k8s中role和clusterrole的区别?
    在Kubernetes(K8s)中,Role和ClusterRole的区别,可以简单概括如下: -Role(角色)是在命名空间级别定义的,仅适用于特定的命名空间。-ClusterRole(集群角色)是在整个集群级别定义的,适用于整个集群的所有命名空间。 具体来说: -Role用于控制对命名空间内资源的访问和操作权限......
  • redis cluster集群搭建
    redis6.2使用docker搭建rediscluster集群(3主3从)所有的操作都在根目录~/Developer/docker-compose/redis-cluster-6.2执行创建配置文件为了方便,写了个shell脚本,懒人必备createConfig.shforportin$(seq63816386);doconf_dir=./${port}/confconf_file=$......
  • 简单易学的机器学习算法——谱聚类(Spectal Clustering)
    上述的“截”函数通常会将图分割成一个点和其余个点。4、其他的“截”函数的表现形式性质3的证明:4、不同的Laplacian矩阵  除了上述的拉普拉斯矩阵,还有规范化的Laplacian矩阵形式:四、Laplacian矩阵与谱聚类中的优化函数的关系1、由Laplacian矩阵到“截”函数......
  • mongodb-shard cluster
    1、shardcluster搭建及规划10个实例端口:38017-38026configserver:3台构成的复制集(1主两从,不支持arbiter)38018-38020shard节点:sh1:38021-23(1主两从,复制集名字sh1)sh2:38024-26(1主两从,复制集名字sh2)mongosmongos:380172、搭建shard节点规划创建安装路径$mkdir-......