前言:经常可以碰到优化sql的需求,开发人员直接扔过来一个SQL让DBA优化,然后怎么办?
当然,经验丰富的DBA可以从各种方向下手,有时通过建立正确索引即可获得很好的优化效果,但是那些复杂SQL错综复杂的表关联,却让DBA们满头大汗。
如下特别介绍一种oracle官方提供的科学优化方法STA,经过实践,不敢说此特性绝对有效,但是可以开阔思路,并且从中学到许多知识,不再用“猜”的方式去创建索引了。
SQL优化器SQL Tuning Advisor (STA),是oracle的sql优化补助工具。
其实优化sql主要有两个方案,其一是改写sql本身,改写sql需要对sql语法、数据库的执行方式都要有较好地理解。
其二就是这个STA,它属于DBMS_SQLTUNE包,它的主要作用是对于sql使用到的表创建正确的索引。
使用STA前提:
要保证优化器是CBO模式下。
show parameter OPTIMIZER_MODE all_rows /*CBO,sql所有返回行都采用基于成本的方式运行*/ first_rows /*CBO,使用成本和试探法相结合的方法,查找一种可以最快返回前面少数行*/ first_rows_n /*CBO,全部采用基于成本的优化方法CBO,并以最快的速度,返回前N行记录*/ choose /*如果有统计信息,采用CBO,否则采用RBO*/ rule /*RBO*/
执行DBMS_SQLTUNE包进行sql优化需要有advisor的权限:
grant advisor to scott;
如下是STA使用例子:
1.首先创建两个练习表obj与ind,仅创建表,无需创建索引:
SQL> create table obj as select * from dba_objects; Table created SQL> create table ind as select * from dba_indexes; Table created SQL> insert into obj select * from obj; 76714 rows inserted SQL> insert into obj select * from obj; 153428 rows inserted SQL> insert into obj select * from obj; 306856 rows inserted SQL> insert into ind select * from ind; 5513 rows inserted SQL> insert into ind select * from ind; 11026 rows inserted SQL> insert into ind select * from ind; 22052 rows inserted
SQL>
2.然后对这两个表,obj与ind进行联合查询,并通过autotrace查看其执行计划:
SQL> set timing on SQL> set autot trace SQL> select count(*) from obj o, ind i where o.object_name=i.index_name; Elapsed: 00:00:00.72 Execution Plan ---------------------------------------------------------- Plan hash value: 380737209 ---------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ---------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 83 | 2884 (1)| 00:00:35 | | 1 | SORT AGGREGATE | | 1 | 83 | | | |* 2 | HASH JOIN | | 93489 | 7577K| 2884 (1)| 00:00:35 | | 3 | TABLE ACCESS FULL| IND | 8037 | 133K| 413 (1)| 00:00:05 | | 4 | TABLE ACCESS FULL| OBJ | 93486 | 6025K| 2471 (1)| 00:00:30 | ---------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("O"."OBJECT_NAME"="I"."INDEX_NAME") Note ----- - dynamic sampling used for this statement (level=2) Statistics ---------------------------------------------------------- 9 recursive calls 4 db block gets 36518 consistent gets 0 physical reads 576684 redo size 527 bytes sent via SQL*Net to client 523 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 1 rows processed SQL>
通过执行计划,可以清晰的看到,在执行以上两个表的联合查询的时候,两张表走的全表扫和hash join。
正式使用STA进行优化:
第一步:创建优化任务
通过调用函数DBMS_SQLTUNE.CREATE_TUNING_TASK来创建优化任务,调用存储过程DBMS_SQLTUNE.EXECUTE_TUNING_TASK执行该任务:
SQL> set autot off SQL> set timing off DECLARE my_task_name VARCHAR2(30); my_sqltext CLOB; BEGIN my_sqltext := 'select count(*) from obj o, ind i where o.object_name=i.index_name'; my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK( sql_text => my_sqltext, user_name => 'SCOTT', scope => 'COMPREHENSIVE', time_limit => 30, task_name => 'tuning_sql_test', description => 'tuning'); DBMS_SQLTUNE.EXECUTE_TUNING_TASK( task_name => 'tuning_sql_test'); END; / PL/SQL 过程已成功完成。
如下是参数解释:
函数CREATE_TUNING_TASK,
sql_text是需要优化的语句,
user_name是该语句通过哪个用户执行,用户名大写,
scope是优化范围(limited或comprehensive),
time_limit优化过程的时间限制,
task_name优化任务名称,
description优化任务描述。
第二步: 执行优化任务
通过调用dbms_sqltune.execute_tuning_task过程来执行前面创建好的优化任务。
SQL> exec dbms_sqltune.execute_tuning_task('tuning_sql_test');
PL/SQL 过程已成功完成。
第三步:检查优化任务的状态
通过查看user_advisor_tasks/dba_advisor_tasks视图可以查看优化任务的当前状态。
SQL> SELECT task_name,status FROM USER_ADVISOR_TASKS WHERE task_name ='tuning_sql_test'; TASK_NAME STATUS ------------------------------ ----------- tuning_sql_test COMPLETED
第四步:查看优化结果
通过dbms_sqltune.report_tning_task函数可以获得优化任务的结果。
SQL> set long 999999 SQL> set serveroutput on size 999999 SQL> set line 120 SQL> select DBMS_SQLTUNE.REPORT_TUNING_TASK( 'tuning_sql_test') from dual; 如下是显示优化的结果: DBMS_SQLTUNE.REPORT_TUNING_TASK('TUNING_SQL_TEST') -------------------------------------------------------------------------------- GENERAL INFORMATION SECTION ------------------------------------------------------------------------------- Tuning Task Name : tuning_sql_test Tuning Task Owner : SCOTT Workload Type : Single SQL Statement Execution Count : 2 Current Execution : EXEC_788 Execution Type : TUNE SQL Scope : COMPREHENSIVE Time Limit(seconds): 30 Completion Status : COMPLETED Started at : 04/19/2019 10:45:32 Completed at : 04/19/2019 10:45:38 ------------------------------------------------------------------------------- Schema Name: SCOTT SQL ID : 6wruu2mxyu8g3 SQL Text : select count(*) from obj o, ind i where o.object_name=i.index_name ------------------------------------------------------------------------------- FINDINGS SECTION (3 findings) ------------------------------------------------------------------------------- 1- Statistics Finding --------------------- Table "SCOTT"."IND" was not analyzed. Recommendation -------------- - Consider collecting optimizer statistics for this table. execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname => 'IND', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE, method_opt => 'FOR ALL COLUMNS SIZE AUTO'); Rationale --------- The optimizer requires up-to-date statistics for the table in order to select a good execution plan. 2- Statistics Finding --------------------- Table "SCOTT"."OBJ" was not analyzed. Recommendation -------------- - Consider collecting optimizer statistics for this table. execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname => 'OBJ', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE, method_opt => 'FOR ALL COLUMNS SIZE AUTO'); Rationale --------- The optimizer requires up-to-date statistics for the table in order to select a good execution plan. 3- Index Finding (see explain plans section below) -------------------------------------------------- The execution plan of this statement can be improved by creating one or more indices. Recommendation (estimated benefit: 89.48%) ------------------------------------------ - Consider running the Access Advisor to improve the physical schema design or creating the recommended index. create index SCOTT.IDX$$_02F40001 on SCOTT.IND("INDEX_NAME"); - Consider running the Access Advisor to improve the physical schema design or creating the recommended index. create index SCOTT.IDX$$_02F40002 on SCOTT.OBJ("OBJECT_NAME"); Rationale --------- Creating the recommended indices significantly improves the execution plan of this statement. However, it might be preferable to run "Access Advisor" using a representative SQL workload as opposed to a single statement. This will allow to get comprehensive index recommendations which takes into account index maintenance overhead and additional space consumption. ------------------------------------------------------------------------------- EXPLAIN PLANS SECTION ------------------------------------------------------------------------------- 1- Original ----------- Plan hash value: 380737209 ---------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ---------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 1 | 83 | 2910 (2)| 00:00:35 | | 1 | SORT AGGREGATE | | 1 | 83 | | | |* 2 | HASH JOIN | | 4421K| 350M| 2910 (2)| 00:00:35 | | 3 | TABLE ACCESS FULL| IND | 46033 | 764K| 413 (1)| 00:00:05 | | 4 | TABLE ACCESS FULL| OBJ | 620K| 39M| 2475 (1)| 00:00:30 | ---------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("O"."OBJECT_NAME"="I"."INDEX_NAME") 2- Using New Indices -------------------- Plan hash value: 2653760187 -------------------------------------------------------------------------------- --------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| T ime | -------------------------------------------------------------------------------- --------- | 0 | SELECT STATEMENT | | 1 | 83 | 306 (8)| 0 0:00:04 | | 1 | SORT AGGREGATE | | 1 | 83 | | | |* 2 | HASH JOIN | | 4421K| 350M| 306 (8)| 0 0:00:04 | | 3 | INDEX FAST FULL SCAN| IDX$$_02F40001 | 46033 | 764K| 19 (0)| 0 0:00:01 | | 4 | INDEX FAST FULL SCAN| IDX$$_02F40002 | 620K| 39M| 265 (1)| 0 0:00:04 | -------------------------------------------------------------------------------- --------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("O"."OBJECT_NAME"="I"."INDEX_NAME") -------------------------------------------------------------------------------
根据优化结果可知问题:
a.Table "SCOTT"."IND" was not analyzed.
b.Table "SCOTT"."OBJ" was not analyzed.
c.索引未创建
对应的解决方案:
a.execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>'IND', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,method_opt => 'FOR ALL COLUMNS SIZE AUTO');
b.execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>'OBJ', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,method_opt => 'FOR ALL COLUMNS SIZE AUTO');
c.create index SCOTT.IDX$$_02F40001 on SCOTT.IND("INDEX_NAME");
create index SCOTT.IDX$$_02F40002 on SCOTT.OBJ("OBJECT_NAME");
创建推荐的索引可以显著地改进此语句的执行计划。但是, 使用典型的 SQL 工作量运行 "访问指导"
可能比单个语句更可取。通过这种方法可以获得全面的索引建议案, 包括计算索引维护的开销和附加的空间消耗
标签:00,Tuning,SQL,sql,SCOTT,Advisor,优化,name From: https://www.cnblogs.com/william2019/p/17307173.html