首页 > 数据库 >Oracle SQL优化之STA(SQL Tuning Advisor)

Oracle SQL优化之STA(SQL Tuning Advisor)

时间:2023-04-11 18:12:07浏览次数:52  
标签:00 Tuning SQL sql SCOTT Advisor 优化 name

前言:经常可以碰到优化sql的需求,开发人员直接扔过来一个SQL让DBA优化,然后怎么办?

当然,经验丰富的DBA可以从各种方向下手,有时通过建立正确索引即可获得很好的优化效果,但是那些复杂SQL错综复杂的表关联,却让DBA们满头大汗。

如下特别介绍一种oracle官方提供的科学优化方法STA,经过实践,不敢说此特性绝对有效,但是可以开阔思路,并且从中学到许多知识,不再用“猜”的方式去创建索引了。

 

SQL优化器SQL Tuning Advisor (STA),是oracle的sql优化补助工具。
其实优化sql主要有两个方案,其一是改写sql本身,改写sql需要对sql语法、数据库的执行方式都要有较好地理解。
其二就是这个STA,它属于DBMS_SQLTUNE包,它的主要作用是对于sql使用到的表创建正确的索引。

使用STA前提:

要保证优化器是CBO模式下。

 

show parameter OPTIMIZER_MODE
 all_rows  /*CBO,sql所有返回行都采用基于成本的方式运行*/
first_rows  /*CBO,使用成本和试探法相结合的方法,查找一种可以最快返回前面少数行*/
first_rows_n  /*CBO,全部采用基于成本的优化方法CBO,并以最快的速度,返回前N行记录*/
choose  /*如果有统计信息,采用CBO,否则采用RBO*/
 rule  /*RBO*/

 
执行DBMS_SQLTUNE包进行sql优化需要有advisor的权限:
grant advisor to scott;
如下是STA使用例子:

1.首先创建两个练习表obj与ind,仅创建表,无需创建索引:

 

SQL> create table obj as select * from dba_objects;
  
 Table created
  
 SQL>  create table ind as select * from dba_indexes;
  
 Table created
  
 SQL> insert into obj select * from obj;
  
 76714 rows inserted
  
 SQL> insert into obj select * from obj;
  
 153428 rows inserted
  
 SQL> insert into obj select * from obj;
  
 306856 rows inserted
  
 SQL> insert into ind select * from ind;
  
 5513 rows inserted
  
 SQL> insert into ind select * from ind;
  
 11026 rows inserted
  
 SQL> insert into ind select * from ind;
  
 22052 rows inserted

SQL>
2.然后对这两个表,obj与ind进行联合查询,并通过autotrace查看其执行计划:

 

SQL> set timing on
 SQL> set autot trace
 SQL> select count(*) from obj o, ind i where o.object_name=i.index_name;
 
 Elapsed: 00:00:00.72
  
 Execution Plan
 ----------------------------------------------------------
 Plan hash value: 380737209
  
----------------------------------------------------------------------------
 | Id  | Operation        | Name | Rows  | Bytes | Cost (%CPU)| Time       |
 ----------------------------------------------------------------------------
 |   0 | SELECT STATEMENT    |       |     1 |    83 |  2884   (1)| 00:00:35 |
 |   1 |  SORT AGGREGATE     |       |     1 |    83 |        |       |
 |*  2 |   HASH JOIN        |       | 93489 |  7577K|  2884   (1)| 00:00:35 |
 |   3 |    TABLE ACCESS FULL| IND  |  8037 |   133K|   413   (1)| 00:00:05 |
 |   4 |    TABLE ACCESS FULL| OBJ  | 93486 |  6025K|  2471   (1)| 00:00:30 |
 ----------------------------------------------------------------------------
  
 Predicate Information (identified by operation id):
 ---------------------------------------------------
  
    2 - access("O"."OBJECT_NAME"="I"."INDEX_NAME")
  
 Note
 -----
    - dynamic sampling used for this statement (level=2)
  
  
 Statistics
 ----------------------------------------------------------
       9  recursive calls
       4  db block gets
       36518  consistent gets
       0  physical reads
      576684  redo size
     527  bytes sent via SQL*Net to client
     523  bytes received via SQL*Net from client
       2  SQL*Net roundtrips to/from client
       0  sorts (memory)
       0  sorts (disk)
       1  rows processed
  
 SQL>

通过执行计划,可以清晰的看到,在执行以上两个表的联合查询的时候,两张表走的全表扫和hash join。

正式使用STA进行优化:
第一步:创建优化任务
通过调用函数DBMS_SQLTUNE.CREATE_TUNING_TASK来创建优化任务,调用存储过程DBMS_SQLTUNE.EXECUTE_TUNING_TASK执行该任务:

 

SQL> set autot off
 SQL> set timing off
 DECLARE
 my_task_name VARCHAR2(30);
 my_sqltext  CLOB;
 BEGIN
 my_sqltext := 'select count(*) from obj o, ind i where o.object_name=i.index_name';
 my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text    => my_sqltext,
 user_name   => 'SCOTT', 
 scope       => 'COMPREHENSIVE',
 time_limit  => 30,
 task_name   => 'tuning_sql_test',
description => 'tuning');
 DBMS_SQLTUNE.EXECUTE_TUNING_TASK( task_name => 'tuning_sql_test');
 END;
 /
 PL/SQL 过程已成功完成。

 

 

如下是参数解释:

函数CREATE_TUNING_TASK,
sql_text是需要优化的语句,
user_name是该语句通过哪个用户执行,用户名大写,
scope是优化范围(limited或comprehensive),
time_limit优化过程的时间限制,
task_name优化任务名称,
description优化任务描述。


第二步: 执行优化任务
通过调用dbms_sqltune.execute_tuning_task过程来执行前面创建好的优化任务。

SQL> exec dbms_sqltune.execute_tuning_task('tuning_sql_test');
PL/SQL 过程已成功完成。
第三步:检查优化任务的状态
通过查看user_advisor_tasks/dba_advisor_tasks视图可以查看优化任务的当前状态。

SQL> SELECT task_name,status FROM USER_ADVISOR_TASKS WHERE task_name ='tuning_sql_test';
  
 TASK_NAME         STATUS
------------------------------ -----------
tuning_sql_test         COMPLETED

第四步:查看优化结果
通过dbms_sqltune.report_tning_task函数可以获得优化任务的结果。

 

SQL> set long 999999
 SQL> set serveroutput on size 999999
 SQL> set line 120
SQL> select DBMS_SQLTUNE.REPORT_TUNING_TASK( 'tuning_sql_test') from dual;
  如下是显示优化的结果:



DBMS_SQLTUNE.REPORT_TUNING_TASK('TUNING_SQL_TEST')
--------------------------------------------------------------------------------
GENERAL INFORMATION SECTION
-------------------------------------------------------------------------------
Tuning Task Name   : tuning_sql_test
 Tuning Task Owner  : SCOTT
 Workload Type       : Single SQL Statement
 Execution Count    : 2
 Current Execution  : EXEC_788
 Execution Type       : TUNE SQL
 Scope           : COMPREHENSIVE
 Time Limit(seconds): 30
 Completion Status  : COMPLETED
 Started at       : 04/19/2019 10:45:32
 Completed at       : 04/19/2019 10:45:38
  
-------------------------------------------------------------------------------
Schema Name: SCOTT
 SQL ID       : 6wruu2mxyu8g3
 SQL Text   : select count(*) from obj o, ind i where
          o.object_name=i.index_name
  
-------------------------------------------------------------------------------
FINDINGS SECTION (3 findings)
-------------------------------------------------------------------------------
 
1- Statistics Finding
 ---------------------
   Table "SCOTT"."IND" was not analyzed.
  
   Recommendation
   --------------
   - Consider collecting optimizer statistics for this table.
     execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>
         'IND', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,
         method_opt => 'FOR ALL COLUMNS SIZE AUTO');
  
   Rationale
   ---------
     The optimizer requires up-to-date statistics for the table in order to
     select a good execution plan.
  
 2- Statistics Finding
 ---------------------
   Table "SCOTT"."OBJ" was not analyzed.
  
   Recommendation
   --------------
  - Consider collecting optimizer statistics for this table.
     execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>
         'OBJ', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,
         method_opt => 'FOR ALL COLUMNS SIZE AUTO');
  
   Rationale
   ---------
     The optimizer requires up-to-date statistics for the table in order to
     select a good execution plan.
  
 3- Index Finding (see explain plans section below)
 --------------------------------------------------
   The execution plan of this statement can be improved by creating one or more
   indices.
  
   Recommendation (estimated benefit: 89.48%)
   ------------------------------------------
   - Consider running the Access Advisor to improve the physical schema design
     or creating the recommended index.
     create index SCOTT.IDX$$_02F40001 on SCOTT.IND("INDEX_NAME");
  
   - Consider running the Access Advisor to improve the physical schema design
     or creating the recommended index.
     create index SCOTT.IDX$$_02F40002 on SCOTT.OBJ("OBJECT_NAME");
  
   Rationale
   ---------
     Creating the recommended indices significantly improves the execution plan
     of this statement. However, it might be preferable to run "Access Advisor"
     using a representative SQL workload as opposed to a single statement. This
     will allow to get comprehensive index recommendations which takes into
     account index maintenance overhead and additional space consumption.
  
 -------------------------------------------------------------------------------
 EXPLAIN PLANS SECTION
 -------------------------------------------------------------------------------
  
 1- Original
 -----------
 Plan hash value: 380737209
  
 ----------------------------------------------------------------------------
 | Id  | Operation        | Name | Rows  | Bytes | Cost (%CPU)| Time       |
 ----------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |       |     1 |    83 |  2910   (2)| 00:00:35 |
 |   1 |  SORT AGGREGATE     |       |     1 |    83 |        |       |
 |*  2 |   HASH JOIN        |       |  4421K|   350M|  2910   (2)| 00:00:35 |
 |   3 |    TABLE ACCESS FULL| IND  | 46033 |   764K|   413   (1)| 00:00:05 |
 |   4 |    TABLE ACCESS FULL| OBJ  |   620K|    39M|  2475   (1)| 00:00:30 |
 ----------------------------------------------------------------------------
  
 Predicate Information (identified by operation id):
 ---------------------------------------------------
  
    2 - access("O"."OBJECT_NAME"="I"."INDEX_NAME")
  
 2- Using New Indices
 --------------------
 Plan hash value: 2653760187
  
 --------------------------------------------------------------------------------
 ---------
 | Id  | Operation           | Name        | Rows    | Bytes | Cost (%CPU)| T
 ime    |
 --------------------------------------------------------------------------------
 ---------
 |   0 | SELECT STATEMENT       |        |     1 |    83 |   306   (8)| 0
 0:00:04 |
 |   1 |  SORT AGGREGATE        |        |     1 |    83 |         |
     |
 |*  2 |   HASH JOIN           |        |  4421K|   350M|   306   (8)| 0
 0:00:04 |
 |   3 |    INDEX FAST FULL SCAN| IDX$$_02F40001 | 46033 |   764K|    19   (0)| 0
 0:00:01 |
 |   4 |    INDEX FAST FULL SCAN| IDX$$_02F40002 |   620K|    39M|   265   (1)| 0
 0:00:04 |
--------------------------------------------------------------------------------
 ---------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
    2 - access("O"."OBJECT_NAME"="I"."INDEX_NAME")
  
-------------------------------------------------------------------------------

  
根据优化结果可知问题:
a.Table "SCOTT"."IND" was not analyzed.
b.Table "SCOTT"."OBJ" was not analyzed.
c.索引未创建
对应的解决方案:
a.execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>'IND', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,method_opt => 'FOR ALL COLUMNS SIZE AUTO');
b.execute dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname =>'OBJ', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,method_opt => 'FOR ALL COLUMNS SIZE AUTO');
c.create index SCOTT.IDX$$_02F40001 on SCOTT.IND("INDEX_NAME");
   create index SCOTT.IDX$$_02F40002 on SCOTT.OBJ("OBJECT_NAME");

创建推荐的索引可以显著地改进此语句的执行计划。但是, 使用典型的 SQL 工作量运行 "访问指导"
可能比单个语句更可取。通过这种方法可以获得全面的索引建议案, 包括计算索引维护的开销和附加的空间消耗

 

标签:00,Tuning,SQL,sql,SCOTT,Advisor,优化,name
From: https://www.cnblogs.com/william2019/p/17307173.html

相关文章

  • Mysql主从同步
    1.配置主服务器#vi/etc/my.cnf[mysqld]character_set_server=utf8init_connect='SETNAMESutf8'#服务器唯一标识server_id=1#二进制日志文件名log-bin=master-binlog-bin-index=master-bin.indexport=3306重新启动主库#servicemysqlrestart在主数据库创......
  • Hive的SQL优化
    --HiveSQL优化1.查看执行计划 --基本信息 explainselect*frompart1whereid<10; --显示输入属性 explaindependency --查看SQL相关权限信息 explainauthorization --查看SQL向量化描述信息,显示为什么未对Map和Reduce进行矢量化 explainvectoriza......
  • mysql中字段存储不区分大小写
    mysql中查询时,遇到字段不区分大小写的情况,大小写都能取到值//sql语句中"select*fromtab_userwherebinaryusername=?andpassword=?";binary可以做到区分大小写//MySQL中默认字段是不区分大小写的,如果要完成区分大小写的功能,在设计时要注意字符集的选择......
  • pymysql 操作数据库
    一、数据库操作应用场景1、检验测试数据接口发送请求后明确会对数据库中的某个字段进行修改,但响应结果中无该字段数据时。如:ihrm删除员工接口。is_delete字段,没有在响应结果中出现!需要借助数据库校验!2、构造测试数据测试数据使用一......
  • flask-sqlalchemy使用,flask-migrate使用
    flask-sqlalchemy使用,flask-migrate使用flask-sqlalchemy使用集成到flask中,我们可以用sqlalchemy来做,就是比较的繁琐现在有一个第三方的flask-sqlalchemy,可以快速的集成到flask中#使用flask-sqlalchemy集成1.下载flask-sqlalchemy#pipinstallflask-sqlalchemy2.导......
  • python爬虫案列11:爬取双色球历史开奖记录并存储到mysql
    开始之前要先在MySQL创建一个名为spider的数据库,在里面创建一个名caipiao的表,表里面三个字段,data,red,blue点击查看代码importrequestsimportpymysqlfromlxmlimportetree#连接数据库conn=pymysql.connect(host='localhost',port=3306,user='root',password='......
  • MULTIINSTRUCT: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning
    指令调优是一种新的学习范式,它可以根据指令指定的任务对预先训练好的语言模型进行微调,在各种自然语言处理任务中显示出良好的零目标性能。然而,对于视觉和多模态任务,它仍然没有被探索。在这项工作中,我们介绍了multiinstruction,这是第一个多模态指令调优基准数据集,由47个不同的多模......
  • plsql控制语句(循环)
    --4.利用三种循环和goto手动循环语句求1到100的偶数和1.loop循环:declare--声明一个变量v_n和一个v_n和的变量v_sum并赋值为0v_nnumber(10):=0;v_sumnumber(10):=0;beginloop......
  • 爬虫案列10:python 连接mysql
    importpymysql#打开数据库连接db=pymysql.connect(host='localhost',user='root',password='root',database='pikachu',port=3306......
  • SQLServer 客户端链接服务器到Oracle数据库 全攻略
    引言和第三方公司进行接口对接时,发现某一个模块第三方只提供一个视图,还让我们直接调用他们数据库......