首页 > 数据库 >深入浅出SQL优化器原理

深入浅出SQL优化器原理

时间:2023-02-13 09:44:24浏览次数:46  
标签:Group 深入浅出 SQL JOIN 优化 id 表达式

深入浅出SQL优化器原理 https://mp.weixin.qq.com/s/u7waqx0JhFnrg8I6TJEHDQ

深入浅出SQL优化器原理

原创 郭泽晖(索月) 阿里云数据库 2023-02-10 17:00 发表于北京

图片

摘要

 

SQL优化器是数据库、数据仓库、大数据等相关领域中最复杂的内核模块之一,它是影响查询性能的关键因素。比如大家熟知的开源产品 MySQL、PostgreSQL、Greenplum DB、Hive、Spark、Presto,都有自己的优化器。本文将由浅入深地带读者了解其中技术原理。

1.起源

1979年,第一款基于 SQL 的商业关系型数据库管理系统 Oracle V2 问世,也标志着第一款商用的 SQL 优化器诞生。理论上,成熟的优化器原型,更早可以追溯到 IBM 的 System-R 项目。现今,很多开源数据库和大数据优化器还是沿用 System-R 原型。

2.从一条SQL开始

SQL(Structured Query Language)是一种结构化的查询语言。它只描述了用户需要什么样的数据,而没有告诉数据库该如何执行。这使得有很多优化空间蕴含在 SQL 改写中,我们来看一个简单的例子:
/* 查询五年级学生的平均年龄 */SELECT avg(s.age)FROM students s  JOIN classes c ON s.cls_id = c.idWHERE c.grade = 5
这个查询有两种执行方式。第一种,就是直接按用户写的顺序去执行。先做一个 INNER JOIN 运算,然后进行过滤(只保留五年级学生),最后再对过滤后的数据进行聚合运算(求平均)。第二种,对SQL进行适当的改写后再执行,如下:
SELECT avg(s.age)FROM students s  JOIN (    SELECT id    FROM classes    WHERE grade = 5 /* 下推过滤条件 */  ) c  ON s.cls_id = c.id

改写后的 SQL,在 INNER JOIN 运算前就完成了过滤运算。这样参与 JOIN 运算的数据量会更少,查询效率也会更快。这个改写是等价的,因为 JOIN 后的结果只保留五年级的数据,那非五年级的数据是没有必要参与 JOIN 运算的。优化器主要工作就是在保证等价的前提下,尽可能让查询更快执行。它的主要流程如下:

图片优化器将抽象语法树(Abstract Syntax Tree)先转换为初始的逻辑计划(Logical Plan),一般这个过程中会同时进行基本的检查工作,比如:表存不存在、权限够不够等。逻辑计划经过一系列等价改写,并选择每个算子该如何执行(算子实现可能多种多样),最终得到一个可执行的物理计划(Physical Plan)。到此,优化器的核心工作基本就完成了。优化器中最关键的部分就是从逻辑到物理的过程,下面深入到其中的细节来看下。

3.基本优化原理

3.1 基于规则的优化 

RBO(Rule-Based Optimizer),优化器中有很大一部分工作是基于规则进行的。简单的说,就是我认为什么样的形式是更优的,我就把 SQL 改写成什么样。比如,上文提到的下推过滤条件,就是一种规则。

这类优化有很多,下推、裁剪、简化表达式、解关联等。还可以利用隐藏在 SQL 中的信息,做更深层次的优化。

/* 查询第一个班级学生的平均年龄 */SELECT avg(s.age)FROM students s  JOIN classes c ON s.cls_id = c.idWHERE c.id = 1

这个查询我们除了将过滤条件下推外,还可以为 students 表生成一个条件 s.cls_id = 1,因为通过 JOIN 条件,我们知道 s.cls_id  等价于 c.id。这样又可以更早地过滤掉一部分数据,减少 JOIN 运算量。最终改写后 SQL 如下:

SELECT avg(s.age)FROM (  SELECT age, cls_id  FROM students  WHERE cls_id = 1 /* 根据等价关系生成的条件 */) s  JOIN (    SELECT id    FROM classes    WHERE id = 1 /* 下推过滤条件 */  ) c  ON s.cls_id = c.id

相信你一定发现了改写后的SQL仍然不是最优的,因为两张表输出的数据一定能跟另一边完全 JOIN 上。所以 INNER JOIN 条件s.cls_id = c.id产生的查找计算量,以及不需要输出的列都可以进一步省去。这个改写是等价的,如果有一边查询不出数据,那也正好 JOIN 不出结果。

SELECT avg(s.age)FROM (  SELECT age  FROM students  WHERE cls_id = 1) s  JOIN (    SELECT NULL    FROM classes    WHERE id = 1  ) c

到这里,相信你已经对 SQL 优化有了一些基本的感觉。但是这里有一个容易被忽视的问题,就是这两张表进行 JOIN 的时候,到底谁在左,谁在右?

一般来说,我们 INNER JOIN 的实现会有 HASH JOIN。JOIN 右端数据用来构建 HashSet,左端数据用来查找 HashSet,能查到说明这行能匹配上,那这行就需要输出。毋庸置疑,大家一定会把 classes 表放右边。因为 classes 表显然更小,这样 HashSet 构建效率高,占用内存少,查询效率也更快。

但优化器并不知道 students 和 classes 的业务关系,也并不知道它们之间的数据量有数量级的差距。这个时候基于代价的优化就派上用场了。

3.2  基于代价的优化 

CBO(Cost-Based Optimizer),SQL优化中大部分收益是来自 CBO 的优化。因为很多很有效的优化手段是没法 100% 确定有收益的,这个时候就需要通过估计执行代价来评估。优化器中 CBO 是标配,不同产品之间,只是实现程度深浅的问题。CBO 中一个很核心的问题,就是怎么估算。这个问题,十几年前就已经研究很透彻了,在商业数据库上也都有成熟的应用。但估算并不是100%准确的,这是一直无法彻底解决的问题。所以现代优化器的很多研究方向是围绕估不准的问题进行,衍生出很多技术方案。

回到上面那个例子,优化器如何知道两张表经过过滤条件后分别剩下多少行呢?这里需要引入统计信息(Statistics)概念。统计信息是事先对表里的数据进行分析,收集到的信息。大部分数据库都是支持手动执行 ANALYZE 命令来收集。像 AnalyticDB 这类商业数据仓库产品,一般都支持自动收集。

这个例子要用到的统计信息是 NDV (The Number of Distinct Values),然后还有一个均匀假设(Uniformity Assumption)。假设学生有1000人,班级有5个,班级人数均匀分布。

那么, 。估算结果:

  • s.cls_id = 1 这个条件的估计结果为

  • c.id = 1这个条件的估计结果为 

根据估算结果,优化器会把 students 放左边,用 classes 表去构建 HashSet。看起来好像也挺简单,因为这是一个简单又典型的事实表和维度表关系,并且大概率每个班级人数差不多,符合均匀假设模型。如果把条件换成 s.cls_id >= 1,就需要再引入范围的统计信息 Min & Max。再复杂点,如果实际人数是不均匀的,有些班级甚至可能没人。那查询一个区间就可能出现班级数量超过学生数量,那么左右关系就需要互换。应对实际中非均匀的模型(大部分业务数据不是均匀分布的),需要引入直方图统计信息来解决。并且这里只是估计单一过滤条件,实际中还需要估计组合条件,估计 JOIN 的输出结果,难度会大大提升。

3.2.1 直方图

图片

直方图(Histogram)基本是商业数仓必备的能力。有些开源数仓产品也有,但是实现程度上不是很完备。比如,只能用直方图估计 filter,而无法估计 join。直方图一般分为等宽和等高,等高应用等会比较多些,因为能更好应对极值。

上图这个查询条件,如果只使用基本的统计信息(Min=1,Max=5,NDV=5),估计结果为:,严重高估,误差达 71%。使用直方图,估计结果为 350,是完全准确的。这个例子略特殊,因为每种值都用一个桶来描述,所以估计解决肯定是绝对准确的。

实际运用中,我们不可能为每种值都建立一个桶(精准直方图),一般会限制桶的数量来减少直方图计算开销和存储开销。这时候多种值会被划入一个桶,划分的方式就是前面提到的等宽与等高。这样的直方图会相对模糊一些,因为每个桶内每种值的具体细节是不清楚的。一般100~300个桶,就能比较好的在估算误差和开销之间权衡了。

图片

在 AnalyticDB 中会自动识别,选择要建立怎样的直方图。对于上述这种 NDV 很小的情况,建立精准直方图就再合适不过了。即便不建立精准直方图,AnalyticDB 也会识别一些热点值,让它们单独一个桶,以增加估算精度。

3.2.2 低估误差

上面简单说了行数怎么估计的,实际中还需要估计范围,NDV等信息的变化,经过每个算子后。这个一般由优化器中叫 Cardinality Estimation (CE) 的模块负责。除此以外,还需要根据CE提供的信息+Cost Model,估计每个算子的代价(CPU/IO/MEM/NET),因为实际的过程并不是简单判定JOIN左右顺序这么简单。JOIN 顺序的可能是阶乘级别的,不同顺序对每个算子的计算量都有影响,不同算子处理同样行数的数据量又是不同的开销。所以,最终优化器需要选出总代价最低的计划,代价估算也是优化器中较复杂的技术之一。

看起来选择代价最低的计划是非常正确的思路,但是这一系列复杂操作下来,有些时候并不一定能选到最优计划。因为代估会有误差,误差大多数来自 CE 模块。导致误差的具体原因,通常是这几个方面:

1.估算能力不足,比如不支持直方图,那就不能有效应对非均匀数据。2.统计信息本身有误差,收集时候使用了近似算法,以及信息的时效性导致。3.列与列之间有一定联系,这层联系不得而知,影响估计结果。4.累积误差,经过每个算子后,推导出的统计信息存在误差,这些误差会层层累积。

5.确实难以估计的表达式,比如没有常量前缀的 LIKE 表达式。

虽然有误差,但是误差并不一定会影响计划选择,否则这套理论就不可能成熟应用了。就上面的例子而言,两张表数据量差距本身就很大,即使不引入直方图做相对准确的估计,在误差范围内,他们相对的大小还是稳定的。

不管怎么说,肯定是估计越准越好,解决上述问题的方案也有很多。比如,AnalyticDB 会自动分析 SQL 复杂程度,决定是否对复杂的 filter 进行动态采样,以提高计划质量。同时还有一些运行态自动调整计划的技术(Adaptive Query Processing),可以纠正计划。即便像 JOIN 这种比较难估准的算子,除了传统技术,业界也有一些理论可以利用,来提高估算精度。比如,利用 Wander Join (采样近似计算)来估计 JOIN 中间结果。

3.3 搜索框架 

上文提到,我们要选出代价最低的计划。这里就涉及到怎么高效率找出所有可能的计划,并选出代价最低的。最经典的方案是 System-R 风格,也是现在很多开源数据库还在用的方案。该方案主要以 RBO + cost-based join reorder (bottom-up DP) 为主,优点就是简单高效,像 MySQL 这种 OLTP 数据库就采用的这种方案。缺点就是容易陷入局部最优,而非全局最优。比如 join order 的变化,可能会影响 shuffle 的数据量,这些因素都需要混在一起搜索,才可能找到全局最优。商业数据库/数仓和开源产品,基本或多或少是参考 Cascades 理论构建的搜索框架。比如,大家熟知的 SQLServer、Snowflake、GreenplumDB 和 Calcite。Cascades 是目前最成熟的理论,AnalyticDB 的 CBO 也是以该理论为基础来构建的搜索框架。Cascades 跟传统的框架比,主要有这么几个优势:
  • 搜索方向从 bottom-up 变成 top-down,有更多裁剪机会,效率更高
  • 分层搜索(先搜逻辑再搜物理)到统一搜索(逻辑和物理混着一起搜),能更早触发裁剪,效率高
  • 框架对优化器工作进行高度抽象后,可并行搜索,扩展性也更强

图片

整个 Cascades 工作原理其实就是一个树型 DP (Dynamic Programing),通过记忆化搜索(Memorization Search)方式从上至下(top-down)推进。每个模块工作原理大致如下:

3.3.1 Expression

Expression 就是算子表达式,比如 JOIN 是一种 Expression,Fillter 是一种 Expression。Expression 的子节点也是 Expression,它们连在一起就形成了计划树。Expression 可以是逻辑的,也可以是物理的。

3.3.2 GroupExpression

GroupExpression 和 Expression 类似,只不过它的子节点是 Group。这样更加抽象,抽象的目的是为了减少表达式数量,如果子节点有10种等价的表示,不需要衍生出10个表达式对象。同样,GroupExpression 有逻辑和物理之分。下文无特殊说明,表达式一般指 GroupExpression。

3.3.3 Group

Group 就是计划树中的一个点,用来归纳重复的信息到一起,以提升效率。主要包含:1)等价的 GroupExpression,有逻辑也有物理。生成的等价的表达式会被放入同一个 Group。2)一些 Group 逻辑属性:输出的统计信息,代价下限,输出的属性信息(unique, function dependency, ...)3)对于特定请求,已经搜出的最优解(winner),也就是 DP 中某个状态的最优结果。

3.3.4 Winner

Winner 存储了特定请求的最优解,这也是记忆化搜索的体现。这个请求指代的是父节点对子节点的属性要求,比如要求子节点给出“按 (A, B) 两列分布”的最优解。

3.3.5 PropertyEnforcer

当子节点无法满足父节点属性要求时,需要强行插入一个算子来满足要求。这个就是 enforcer 干的事,由它来决定具体插入一个怎样的算子以满足属性要求。属性主要包括,分布属性,排序属性等等。

3.3.6 Memo

Memo 就是搜索空间,用来存储 Group。当我们生成新的表达式后,都需要去 Memo 中查找是否有一样或者等价的表达式存在,如果有,需要放入同样的 Group。

3.3.7 RULE规则分为两类:

● Transformation rules:负责把逻辑表达式转换为等价的逻辑表达式,这步会产生新的逻辑表达式。

●  Implementation rules:负责把逻辑表达式转换为物理表达式,这步会产生新的物理表达式。比如 JOIN 的实现可以是 Hash Join,也可以是 Nested Loop Join。

3.3.8 TASK

驱动上面这些东西运转的就是各种 Task,这些 Task 本质上是对递归遍历树的过程的一个抽象(递归->手工栈)。使得搜索流程更加独立,更好扩展,并且具备并行执行的能力。

OptimizeGroup

OptimizeGroup 对特定 Group 发起特定请求,是每个 Group 优化的入口。这步会逐一遍历 Group 内所有 GroupExpression,逻辑表达式会调用 OptimizeGroupExpression,物理表达式会调用 OptimizeInput 。OptimizeInput 会更先运行,目的是为了更快生产一个物化后的计划,使得获得一个代价上界,用来压缩后续搜索空间。

OptimizeGroupExpression

OptimizeGroupExpression 对特定逻辑表达式进行优化。主要就是应用 transformation 和 implementation 两种规则。对每条可以应用的规则,会调用 ApplyRule。特别的,有时只会应用 transformation 规则,取决于 OptimizeGroupExpression 被调用的场景。由于不同规则需要匹配的 pattern 不同,可能需要继续探索子 Group,才能知道是否有满足 pattern。所以在调用 ApplyRule 之前,如果有必要,会调用 ExploreGroup 来探索子 Group。

ExploreGroup

ExploreGroup 被 OptimizeGroupExpression 调用。是为了探索 Group 内可能生成的所有等价逻辑表达式,为 ApplyRule 做准备。探索过程就是对 Group 内的所有逻辑表达式应用可以应用的 transformation 规则。这个过程复用 OptimizeGroupExpression 代码,控制只应用 transformation 规则,所以会调用 OptimizeGroupExpression。

ApplyRule

ApplyRule 输入是逻辑表达式和规则。根据规则类型不同,最终会得到新的逻辑或者物理表达式。如果生成了物理表达式,会直接调用 OptimizeInput。如果生成了逻辑,会调用 OptimizeGroupExpression。

OptimizeInput

OptimizeInput 输入是一个物理表达式和属性要求。OptimizeInput 会根据物理表达式和属性要求,生成对其子 Group 的请求,然后向所有子 Group 发起 OptimizeGroup 请求,子 Group 最终返回满足要求的最优结果 winner。根据这些 winner 的 cost  + 当前物理表达式的 cost,就得到了以这个物理表达式为根的子树的 cost。如果最终这个物理表达式无法满足父节点的属性要求,那就需要 PropertyEnforcer 介入,强制插入特定表达式以满足需求。

3.3.9 分支裁剪

裁剪是怎么发生的呢?当向子 Group 请求的过程中,不断收集到 winner,如果当前累加的 cost 已经超过上界,那么可以直接停止搜索。上界怎么来的呢?一开始是无穷大,随着第一个物理表达式满足了父节点的要求,会得到一个 cost,被当作初始的上界,并通过请求上下文带给其它任务(不同请求上下文是分开的,上界也是独立的)。一个 Group 内可能有很多物理表达式都可以等价满足要求,每个物理表达式最终都会被调用 OptimizeInput 任务。在这个过程中,有些物理表达式能做到更低的 cost,那么上下文中的上界就会被压缩。有些不能满足上界要求,搜索会直接停止。这个就是上界裁剪,用来减少搜索空间,提高效率。

在上界裁剪的基础上,还有下界裁剪。前面我们提到 OptimizeInput 输入是一个物理表达式,我们对所有子 Group 调用 OptimizeGroup。这个过程中,子 Group 所有可能被探索,最终最低代价的表达式作为 winner 返回。如果探索到某一子 Group 时候,cost 已经超过上界了,那么上界裁剪发生,直接停止后续任何搜索任务。有没有可能我不去探索子 Group,我直接就能知道将来的 cost 一定会超过上界呢?

这个就是下界裁剪,需要根据 cost model + 逻辑属性,直接确定一个 Group 的最小开销(下界)。将来任何可能计算出来的开销都会大于等于这个开销,记为 Group.costLowerBound。如果 sum(subGroup.costLowerBound) + GroupExpression.cost > upper bound成立,那根本不需要对子 Group 进行任何探索,直接就可以停了。

这些裁剪技术都是很有效的,在 AnalyticDB 中都有应用。经过我们测试,在 TPC-DS 中,大部分查询搜索空间都有减少,有些甚至可以减少近 50% 的搜索空间。

4.结语

在数据库和大数据等相关领域,查询优化十分重要。实际生产中的问题,远比本文提到的要复杂。篇幅有限,更多技术细节没有深究。AnalyticDB 作为国内领先的云原生数仓和 TPC-DS 世界记录保持者,在查询优化技术上不断投入和创新。对技术感兴趣的同学,欢迎加入 AnalyticDB 社区讨论(云数据仓库ADB-开发者群:钉钉群号 23128105)云原生数据仓库 AnalyticDB MySQL 版(简称 AnalyticDB)是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。

 

标签:Group,深入浅出,SQL,JOIN,优化,id,表达式
From: https://www.cnblogs.com/rsapaper/p/17115342.html

相关文章

  • mysql 运维篇
    日志错误日志错误日志是mysql中最重要的日志之一,它记录了当mysqld启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息,当数据库出现任何故障导致无法正......
  • 【数据库】-- MySQL数据库锁
        在项目中运到锁的案例是在分布式项目中,采用定时任务去执行数据库的插入操作时,由于服务部署采用的是多节点部署,在执行定时任务时有可能会造成同一时间定时任务......
  • 在AWS云服务器里用lambda操作rds的mysql数据库
    yuminstall-ymysql  #在EC2的服务器里安装mysql主要是在服务器里做连接mysql用(mysql -hrds-instance-endpoint -uadmin-P3306-p12345678)pip3install--......
  • [07] 案例&优化
    1.通信框架功能设计1.1功能描述通信框架承载了业务内部各模块之间的消息交互和服务调用,它的主要功能如下:基于Netty的NIO通信框架,提供高性能的异步通信能力;提供......
  • MySQL——优化(三):优化技巧1
    一、长字段索引优化   1、额外创建一个hash字段,作为索引(B+tree的伪hash)hash算法应满足(一般使用crc32或fnv64):a、字段长度应该比较小(SHA1/MD5不合适)      b......
  • springboot 多数据源 实例(sybase、mysql数据库)(下)
    接下来见证奇迹的时刻:首先要借鉴yandype这位大神的总结的代码:说明:springboot2.3.x+mybatisplus+ druid +sybase+mysql多数据源整合1、项目依赖<?xmlvers......
  • 一步一步教你apache深入优化
    Aache深入优化一、在Centos01上安装apache服务,在Centos02配置DNS服务器使用域名www.stz.com1、在Centos01上安装apache服务配置网站1)切换光盘2)挂载光盘解压源代码程序[root@......
  • Nginx优化与防盗链
    Nginx优化与防盗链......
  • ipo导出excel优化
    如题,java后台使用ipo导出excel,18万条数据耗时130S,效率不是很理想。排查发现慢在了service层获取数据上,SQL单独拿出来就是个单表查询,并不慢,但是mbatis映射到list就慢了,2W条......
  • springboot 多数据源 实例(sybase、mysql数据库)(上)
    最近项目需要用到sybase(sqlanywhere)、mysql数据库两边数据交互。由于之前对sybase数据库一点不懂踩了许多坑特意记下:连接sybase客户端需要用到 SQLCentral1......