索引概述
介绍
索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
演示
假如我们要执行的SQL语句为 : select * from employee where age = 45;
- 无索引情况:在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。
- 有索引情况:如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。
此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。
**备注: **这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并不是索引的真实结构,索引的真实结构,后面会详细介绍。
特点
优势 | 劣势 |
---|---|
提高数据检索的效率,降低数据库的IO成本 | 索引列也是要占用空间的。 |
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。 | 索引大大提高了查询效率,同时却也降低更新表的速度, 如对表进行INSERT、UPDATE、DELETE时,效率降低。 |
索引结构
概述
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:
索引结构 | 描述 |
---|---|
B+Tree索引 | 最常见的索引类型,大部分引擎都支持B+树索引 |
Hash索引 | 底层数据结构是用哈希表实现的, 只有精确匹配索引列的查询才有效, 不支持范围查询 |
R-tree(空间索引) | 空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-text(全文 索引) | 是一种通过建立倒排索引,快速匹配文档的方式。类似于 Lucene,Solr,ES |
上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况。
索引 | InnoDB | MyISAM | Memory |
---|---|---|---|
B+tree索引 | 支持 | 支持 | 支持 |
Hash 索引 | 不支持 | 不支持 | 支持 |
R-tree 索引 | 不支持 | 支持 | 不支持 |
Full-text | 5.6版本之后支持 | 支持 | 不支持 |
注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。
二叉树
假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
- 顺序插入时,会形成一个链表,查询性能大大降低。
- 大数据量情况下,层级较深,检索速度慢。
此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:
但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点: - 大数据量情况下,层级较深,检索速度慢。
所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。
B-Tree
B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:
说明: 树的度数指的是一个节点的子节点个数。
我们可以通过一个数据结构可视化的网站来简单演示一下。动画演示B-Tree
特点:
- 5阶的B树,每一个节点最多存储4个key,对应5个指针。
- 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
- 在B树中,非叶子节点和叶子节点都会存放数据。
B+Tree
B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:
我们可以看到,两部分:
- 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
- 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
我们可以通过一个数据结构可视化的网站来简单演示一下。动画演示B+Tree
最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:
- 所有的数据都会出现在叶子节点。
- 叶子节点形成一个单向链表。
- 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
Hash
MySQL中除了支持B+Tree索引,还支持一种索引类型Hash索引。
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
特点:
- Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,...)
- 无法利用索引完成排序操作
- 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引
存储引擎支持
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。
为什么InnoDB存储引擎选择使用B+tree索引结构?
- 相对于二叉树,层级更少,搜索效率高;
- 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
- 相对Hash索引,B+tree支持范围匹配及排序操作;
索引分类
在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。
分类 | 含义 | 特点 | 关键字 |
---|---|---|---|
主键索引 | 针对于表中主键创建的索引 | 默认自动创建, 只能有一个 | PRIMARY |
唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
常规索引 | 快速定位特定数据 | 可以有多个 | |
全文索引 | 全文索引查找的是文本中的关键词,而不是比 较索引中的值 | 可以有多个 | FULLTEXT |
聚集索引&二级索引
而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:
分类 | 含义 | 特点 |
---|---|---|
聚集索引(Clustered Index) | 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 | 必须有,而且只 有一个 |
二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
- 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
聚集索引和二级索引的具体结构如下:
- 聚集索引的叶子节点下挂的是这一行的数据 。
- 二级索引的叶子节点下挂的是该字段值对应的主键值。
接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。
具体过程如下:
①. 由于是根据name字段进行查询,所以先根据name='Arm'到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm对应的主键值10。
②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。
③. 最终拿到这一行的数据,直接返回即可。
回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。
思考题
题一:
以下两条SQL语句,那个执行效率高? 为什么?
A. select * from user where id = 10 ;
B. select * from user where name = 'Arm' ;
备注: id为主键,name字段创建的有索引;
解答:
A语句的执行性能要高于B语句。因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然后再查询聚集索引,也就是需要进行回表查询。
题二:
InnoDB主键索引的B+tree高度为多高呢?
解答:
假设:一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空间,主键即使为bigint,占用字节数为8。
高度为2:
n * 8 + (n + 1) * 6 = 16*1024
,算出n约为 1170(n代表key的个数)
1171* 16 = 18736
,也就是说,如果树的高度为2,则可以存储 18000 多条记录。
高度为3:
1171 * 1171 * 16 = 21939856
,也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。