前言
1. 什么是Redis?它主要用来什么的?
Redis,英文全称是Remote Dictionary Server(远程字典服务),是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
与MySQL数据库不同的是,Redis的数据是存在内存中的。它的读写速度非常快,每秒可以处理超过10万次读写操作。因此redis被广泛应用于缓存,另外,Redis也经常用来做分布式锁。除此之外,Redis支持事务、持久化、LUA 脚本、LRU 驱动事件、多种集群方案
说说Redis的基本数据结构类型
大多数小伙伴都知道,Redis有以下这五种基本类型:
- String(字符串)
- Hash(哈希)
- List(列表)
- Set(集合)
- zset(有序集合)
它还有三种特殊的数据结构类型
- Geospatial
- Hyperloglog
- Bitmap
2.1 Redis 的五种基本数据类型
String(字符串)
简介:String是Redis最基础的数据结构类型,它是二进制安全的,可以存储图片或者序列化的对象,值最大存储为512M
简单使用举例: set key value、get key等
应用场景:共享session、分布式锁,计数器、限流。
内部编码有3种,int(8字节长整型)/embstr(小于等于39字节字符串)/raw(大于39个字节字符串)
C语言的字符串是char[]实现的,而Redis使用SDS(simple dynamic string) 封装,sds源码如下:
struct sdshdr{ unsigned int len; // 标记buf的长度 unsigned int free; //标记buf中未使用的元素个数 char buf[]; // 存放元素的坑 }
Hash(哈希)
简介:在Redis中,哈希类型是指v(值)本身又是一个键值对(k-v)结构
简单使用举例:hset key field value 、hget key field
内部编码:ziplist(压缩列表) 、hashtable(哈希表)
应用场景:缓存用户信息等。
注意点:如果开发使用hgetall,哈希元素比较多的话,可能导致Redis阻塞,可以使用hscan。而如果只是获取部分field,建议使用hmget。
List(列表)
简介:列表(list)类型是用来存储多个有序的字符串,一个列表最多可以存储2^32-1个元素。
简单实用举例:lpush key value [value ...] 、lrange key start end
内部编码:ziplist(压缩列表)、linkedlist(链表)
应用场景:消息队列,文章列表,
一图看懂list类型的插入与弹出:
list应用场景参考以下:
- lpush+lpop=Stack(栈)
- lpush+rpop=Queue(队列)
- lpsh+ltrim=Capped Collection(有限集合)
- lpush+brpop=Message Queue(消息队列)
Set(集合)
简介:集合(set)类型也是用来保存多个的字符串元素,但是不允许重复元素
简单使用举例:sadd key element [element ...]、smembers key
内部编码:intset(整数集合)、hashtable(哈希表)
注意点:smembers和lrange、hgetall都属于比较重的命令,如果元素过多存在阻塞Redis的可能性,可以使用sscan来完成。
应用场景:用户标签,生成随机数抽奖、社交需求。
有序集合(zset)
简介:已排序的字符串集合,同时元素不能重复
简单格式举例:zadd key score member [score member ...],zrank key member
底层内部编码:ziplist(压缩列表)、skiplist(跳跃表)
应用场景:排行榜,社交需求(如用户点赞)。
2.2 Redis 的三种特殊数据类型
Geo:Redis3.2推出的,地理位置定位,用于存储地理位置信息,并对存储的信息进行操作。
HyperLogLog:用来做基数统计算法的数据结构,如统计网站的UV。
Bitmaps :用一个比特位来映射某个元素的状态,在Redis中,它的底层是基于字符串类型实现的,可以把bitmaps成作一个以比特位为单位的数组
3.Redis为什么这么快
3.1 基于内存存储实现
我们都知道内存读写是比在磁盘快很多的,Redis基于内存存储实现的数据库,相对于数据存在磁盘的MySQL数据库,省去磁盘I/O的消耗。
3.2 高效的数据结构
我们知道,Mysql索引为了提高效率,选择了B+树的数据结构。其实合理的数据结构,就是可以让你的应用/程序更快。先看下Redis的数据结构&内部编码图:
字符串长度处理:Redis获取字符串长度,时间复杂度为O(1),而C语言中,需要从头开始遍历,复杂度为O(n);
空间预分配:字符串修改越频繁的话,内存分配越频繁,就会消耗性能,而SDS修改和空间扩充,会额外分配未使用的空间,减少性能损耗。
惰性空间释放:SDS 缩短时,不是回收多余的内存空间,而是free记录下多余的空间,后续有变更,直接使用free中记录的空间,减少分配。
二进制安全:Redis可以存储一些二进制数据,在C语言中字符串遇到'\0'会结束,而 SDS中标志字符串结束的是len属性。
字典
Redis 作为 K-V 型内存数据库,所有的键值就是用字典来存储。字典就是哈希表,比如HashMap,通过key就可以直接获取到对应的value。而哈希表的特性,在O(1)时间复杂度就可以获得对应的值。
跳跃表
- 跳跃表是Redis特有的数据结构,就是在链表的基础上,增加多级索引提升查找效率。
- 跳跃表支持平均 O(logN),最坏 O(N)复杂度的节点查找,还可以通过顺序性操作批量处理节点。
3.3 合理的数据编码
Redis 支持多种数据数据类型,每种基本类型,可能对多种数据结构。什么时候,使用什么样数据结构,使用什么样编码,是redis设计者总结优化的结果。
String:如果存储数字的话,是用int类型的编码;如果存储非数字,小于等于39字节的字符串,是embstr;大于39个字节,则是raw编码。
List:如果列表的元素个数小于512个,列表每个元素的值都小于64字节(默认),使用ziplist编码,否则使用linkedlist编码
Hash:哈希类型元素个数小于512个,所有值小于64字节的话,使用ziplist编码,否则使用hashtable编码。
Set:如果集合中的元素都是整数且元素个数小于512个,使用intset编码,否则使用hashtable编码。
Zset:当有序集合的元素个数小于128个,每个元素的值小于64字节时,使用ziplist编码,否则使用skiplist(跳跃表)编码
3.4 合理的线程模型
I/O 多路复用
I/O 多路复用
多路I/O复用技术可以让单个线程高效的处理多个连接请求,而Redis使用用epoll作为I/O多路复用技术的实现。并且,Redis自身的事件处理模型将epoll中的连接、读写、关闭都转换为事件,不在网络I/O上浪费过多的时间。
什么是I/O多路复用?
I/O :网络 I/O 多路 :多个网络连接 复用:复用同一个线程。 IO多路复用其实就是一种同步IO模型,它实现了一个线程可以监视多个文件句柄;一旦某个文件句柄就绪,就能够通知应用程序进行相应的读写操作;而没有文件句柄就绪时,就会阻塞应用程序,交出cpu。
单线程模型
Redis是单线程模型的,而单线程避免了CPU不必要的上下文切换和竞争锁的消耗。也正因为是单线程,如果某个命令执行过长(如hgetall命令),会造成阻塞。Redis是面向快速执行场景的数据库。,所以要慎用如smembers和lrange、hgetall等命令。
Redis 6.0 引入了多线程提速,它的执行命令操作内存的仍然是个单线程。
3.5 虚拟内存机制
Redis直接自己构建了VM机制 ,不会像一般的系统会调用系统函数处理,会浪费一定的时间去移动和请求。
Redis的虚拟内存机制是啥呢?
虚拟内存机制就是暂时把不经常访问的数据(冷数据)从内存交换到磁盘中,从而腾出宝贵的内存空间用于其它需要访问的数据(热数据)。通过VM功能可以实现冷热数据分离,使热数据仍在内存中、冷数据保存到磁盘。这样就可以避免因为内存不足而造成访问速度下降的问题。
4. 什么是缓存击穿、缓存穿透、缓存雪崩?
4.1 缓存穿透问题
先来看一个常见的缓存使用方式:读请求来了,先查下缓存,缓存有值命中,就直接返回;缓存没命中,就去查数据库,然后把数据库的值更新到缓存,再返回。
读取缓存
缓存穿透:指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,进而给数据库带来压力。
通俗点说,读请求访问时,缓存和数据库都没有某个值,这样就会导致每次对这个值的查询请求都会穿透到数据库,这就是缓存穿透。
缓存穿透一般都是这几种情况产生的:
- 业务不合理的设计,比如大多数用户都没开守护,但是你的每个请求都去缓存,查询某个userid查询有没有守护。
- 业务/运维/开发失误的操作,比如缓存和数据库的数据都被误删除了。
- 黑客非法请求攻击,比如黑客故意捏造大量非法请求,以读取不存在的业务数据
如何避免缓存穿透呢? 一般有三种方法。
1.如果是非法请求,我们在API入口,对参数进行校验,过滤非法值。
2.如果查询数据库为空,我们可以给缓存设置个空值,或者默认值。但是如有有写请求进来的话,需要更新缓存哈,以保证缓存一致性,同时,最后给缓存设置适当的过期时间。(业务上比较常用,简单有效)
3.使用布隆过滤器快速判断数据是否存在。即一个查询请求过来时,先通过布隆过滤器判断值是否存在,存在才继续往下查。
布隆过滤器原理:它由初始值为0的位图数组和N个哈希函数组成。一个对一个key进行N个hash算法获取N个值,在比特数组中将这N个值散列后设定为1,然后查的时候如果特定的这几个位置都为1,那么布隆过滤器判断该key存在。
4.2 缓存雪奔问题
缓存雪奔: 指缓存中数据大批量到过期时间,而查询数据量巨大,请求都直接访问数据库,引起数据库压力过大甚至down机。
缓存雪奔一般是由于大量数据同时过期造成的,对于这个原因,可通过均匀设置过期时间解决,即让过期时间相对离散一点。如采用一个较大固定值+一个较小的随机值,5小时+0到1800秒酱紫。
Redis 故障宕机也可能引起缓存雪奔。这就需要构造Redis高可用集群啦。
4.3 缓存击穿问题
缓存击穿: 指热点key在某个时间点过期的时候,而恰好在这个时间点对这个Key有大量的并发请求过来,从而大量的请求打到db。
缓存击穿看着有点像,其实它两区别是,缓存雪奔是指数据库压力过大甚至down机,缓存击穿只是大量并发请求到了DB数据库层面。可以认为击穿是缓存雪奔的一个子集吧。有些文章认为它俩区别,是区别在于击穿针对某一热点key缓存,雪奔则是很多key。
解决方案就有两种:
1.使用互斥锁方案。缓存失效时,不是立即去加载db数据,而是先使用某些带成功返回的原子操作命令,如(Redis的setnx)去操作,成功的时候,再去加载db数据库数据和设置缓存。否则就去重试获取缓存。
2. “永不过期”,是指没有设置过期时间,但是热点数据快要过期时,异步线程去更新和设置过期时间。
什么是热Key问题,如何解决热key问题
什么是热Key呢?在Redis中,我们把访问频率高的key,称为热点key。
如果某一热点key的请求到服务器主机时,由于请求量特别大,可能会导致主机资源不足,甚至宕机,从而影响正常的服务。
而热点Key是怎么产生的呢?主要原因有两个:
- 用户消费的数据远大于生产的数据,如秒杀、热点新闻等读多写少的场景。
- 请求分片集中,超过单Redi服务器的性能,比如固定名称key,Hash落入同一台服务器,瞬间访问量极大,超过机器瓶颈,产生热点Key问题。
那么在日常开发中,如何识别到热点key呢?
- 凭经验判断哪些是热Key;
- 客户端统计上报;
- 服务代理层上报
如何解决热key问题?
- Redis集群扩容:增加分片副本,均衡读流量;
- 将热key分散到不同的服务器中;
- 使用二级缓存,即JVM本地缓存,减少Redis的读请求。
6. Redis 过期策略和内存淘汰策略
6.1 Redis的过期策略
我们在set key
的时候,可以给它设置一个过期时间,比如expire key 60
。指定这key60s后过期,60s后,redis是如何处理的嘛?我们先来介绍几种过期策略:
定时过期
每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即对key进行清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。
惰性过期
只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。
定期过期
每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。 expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是该键的毫秒精度的UNIX时间戳表示的过期时间。键空间是指该Redis集群中保存的所有键。
Redis中同时使用了惰性过期和定期过期两种过期策略
假设Redis当前存放30万个key,并且都设置了过期时间,如果你每隔100ms就去检查这全部的key,CPU负载会特别高,最后可能会挂掉。 因此,redis采取的是定期过期,每隔100ms就随机抽取一定数量的key来检查和删除的。 但是呢,最后可能会有很多已经过期的key没被删除。这时候,redis采用惰性删除。在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间并且已经过期了,此时就会删除。
但是呀,如果定期删除漏掉了很多过期的key,然后也没走惰性删除。就会有很多过期key积在内存内存,直接会导致内存爆的。或者有些时候,业务量大起来了,redis的key被大量使用,内存直接不够了,运维小哥哥也忘记加大内存了。难道redis直接这样挂掉?不会的!Redis用8种内存淘汰策略保护自己~
6.2 Redis 内存淘汰策略
volatile-lru:当内存不足以容纳新写入数据时,从设置了过期时间的key中使用LRU(最近最少使用)算法进行淘汰;
allkeys-lru:当内存不足以容纳新写入数据时,从所有key中使用LRU(最近最少使用)算法进行淘汰。
volatile-lfu:4.0版本新增,当内存不足以容纳新写入数据时,在过期的key中,使用LFU算法进行删除key。
allkeys-lfu:4.0版本新增,当内存不足以容纳新写入数据时,从所有key中使用LFU算法进行淘汰;
volatile-random:当内存不足以容纳新写入数据时,从设置了过期时间的key中,随机淘汰数据;。
allkeys-random:当内存不足以容纳新写入数据时,从所有key中随机淘汰数据。
volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的key中,根据过期时间进行淘汰,越早过期的优先被淘汰;
noeviction:默认策略,当内存不足以容纳新写入数据时,新写入操作会报错
7.Redis的常用应用场景
- 缓存
- 排行榜
- 计数器应用
- 共享Session
- 分布式锁
- 社交网络
- 消息队列
- 位操作
7.1 缓存
我们一提到redis,自然而然就想到缓存,国内外中大型的网站都离不开缓存。合理的利用缓存,比如缓存热点数据,不仅可以提升网站的访问速度,还可以降低数据库DB的压力。并且,Redis相比于memcached,还提供了丰富的数据结构,并且提供RDB和AOF等持久化机制,强的一批。
7.2 排行榜
当今互联网应用,有各种各样的排行榜,如电商网站的月度销量排行榜、社交APP的礼物排行榜、小程序的投票排行榜等等。Redis提供的zset数据类型能够实现这些复杂的排行榜。
比如,用户每天上传视频,获得点赞的排行榜可以这样设计:
1.用户Jay上传一个视频,获得6个赞,可以酱紫:
zadd user:ranking:2021-03-03 Jay 3
2.过了一段时间,再获得一个赞,可以这样:
zincrby user:ranking:2021-03-03 Jay 1
3.如果某个用户John作弊,需要删除该用户:
zrem user:ranking:2021-03-03 John
4.展示获取赞数最多的3个用户
zrevrangebyrank user:ranking:2021-03-03 0 2
7.3 计数器应用
各大网站、APP应用经常需要计数器的功能,如短视频的播放数、电商网站的浏览数。这些播放数、浏览数一般要求实时的,每一次播放和浏览都要做加1的操作,如果并发量很大对于传统关系型数据的性能是一种挑战。Redis天然支持计数功能而且计数的性能也非常好,可以说是计数器系统的重要选择。
标签:基本,缓存,过期,数据库,Redis,内存,key,讲解 From: https://www.cnblogs.com/boye169/p/17039601.html