首页 > 数据库 >从实战出发,聊聊缓存数据库一致性

从实战出发,聊聊缓存数据库一致性

时间:2023-01-09 15:12:08浏览次数:68  
标签:缓存 一致 删除 数据库 更新 聊聊 一致性 数据

在云服务中,缓存是极其重要的一点。所谓缓存,其实是一个高速数据存储层。当缓存存在后,日后再次请求该数据就会直接访问缓存,提升数据访问的速度。但是缓存存储的数据通常是短暂性的,这就需要经常对缓存进行更新。而我们操作缓存和数据库,分为读操作和写操作。

读操作的详细流程为,请求数据,如缓存中存在数据则直接读取并返回,如不存在则从数据库中读取,成功之后将数据放到缓存中。

写操作则又分为以下 4 种:

  • 先更新缓存,再更新数据库

  • 先更新数据库,再更新缓存

  • 先删除缓存,再更新数据库

  • 先更新数据库,再删除缓存

一些一致性要求不高的数据,如点赞数等,可以先更新缓存,然后再定时同步到数据库。而在其它情况下,我们通常会等数据库操作成功,再操作缓存。

下面主要介绍更新数据库成功后,更新缓存和删除缓存这两个操作的区别和改进方案。

先更新数据库,再删除缓存

先更新数据库,再删除缓存,这种模式也叫 cache aside,是目前比较流行的处理缓存数据库一致性的方法。
它的优点是:

  • 出现数据不一致的概率极低,实现简单

  • 由于不更新缓存,而是删除缓存,在并发写写情况下,不会出现数据不一致的情况

出现数据不一致的情况出现在并发读写的场景下,详情可见下图:

这种情况发生的概率比较低,必须要在某⼀时间区间同时存在两个或多个写⼊和多个读取,所以大部分业务都容忍了这种小概率的不一致。

虽然发生的概率较低,但还是有一些方案可以让影响降到更低。

优化方案

第一种方案为:采用较短的过期时间来减少影响。这种方法有两个缺点:

  • 删除后,读请求会 miss

  • 如果缓存不一致,不一致的时间取决于过期时间设置

第二种方案则是采用延迟双删的策略,比如:1分钟以后删除缓存。这种做法也存在两个缺点:

  • 删除缓存之前的时间里可能会有不一致

  • 删除后,读请求会 miss

第三种方案为双更新策略,思路与延迟双删策略差不多。不同的点是,此方案不删除缓存而是更新缓存,所以读请求就不会发生 miss。但是另一个缺点还是存在。

先更新数据库,再更新缓存

相比先更新数据库再删除缓存的操作,先更新数据库再更新缓存的操作可以避免用户请求直接打到数据库,进而导致缓存穿透的问题。

此方案是更新缓存,我们需要关注并发读写和并发写写两个场景下导致的数据不一致。

先来看看并发读写的情况,步骤如下图所示:

可以看到由于 4 和 5 操作步骤都设置了缓存,如果步骤4发生在步骤5之前,那么会出现旧值覆盖新值的情况,也就是缓存不一致的情况。这种情况只需要修改一下步骤5,便可解决。

优化方案

可以通过在第五步不要 set cache,改用 add cache,redis 中使用 setnx 命令来进行优化。修改后步骤示意图如下:

解决完了并发读写场景导致的数据不一致,再来看看并发写写情况导致的数据不一致问题。

出现不一致的情况如下图所示,Thread A 比 Thread B 先更新完 DB,但是 Thread B 却先更新完缓存,这就导致缓存会被 Thread A 的旧值所覆盖。

这种情况也是有方法可以优化的,下面介绍两个主流方法:

  • 使用分布式锁

  • 使用版本号

使用分布式锁

要解决并发读写的问题,第一个思路就是消灭并发写。而使用分布式锁,让写操作排队执行,理论上就可以解决并发写的问题,但现在并没有可靠的分布式锁实现方案。

不管是基于 Zookeeper,etcd 还是 redis 实现分布式锁,为了防止程序挂掉而锁不能释放,我们都会给锁设置租约/过期时间,想象一种场景:如果进程卡顿几分钟(虽然概率较低),导致锁失效,而其它线程获取到锁,此时就又出现了并发读写的场景了,还是有可能会造成数据不一致。

使用版本号

并发写导致的数据不一致,是因为低版本覆盖了高版本。那么我们可以想办法不让这种情况发生,一种可行的方案是引入版本号,如果写入的数据低于现版本号,则放弃覆盖。

缺点:

  • 应用层维护版本的代价很大,大规模落地很难

  • 需修改数据模型,添加版本

  • 每次需要修改,让版本自增

不管是更新缓存还是删除缓存,优化以后都将出现数据不一致的概率降到最低了。但是有没有一种办法既简单,又不会出现数据不一致的场景呢。下面就介绍一下 Rockscache。

Rockscache

简介

Rockscache 也是一种保持缓存一致性的方法,它采用的缓存管理策略是:更新数据库后,将缓存标记为删除。主要通过以下两个方法来实现:

  • Fetch 函数实现了前面的查询缓存

  • TagAsDeleted 函数实现了标记删除的逻辑

在运行时只要读数据时调用 Fetch,并且确保更新数据库之后调用 TagAsDeleted,就能够确保缓存最终一致。这一策略有 4 个特点:

  • 不需要引入版本,几乎可以适用于所有缓存场景

  • 架构上与"更新 DB 后删除缓存”一样,无额外负担

  • 性能高:变化只是将原来的 GET/SET/DELETE,替换为 Lua 脚本

  • 强一致方案的性能也很高,与普通的防缓存击穿方案一样

在 Rockscache 策略中,缓存中的数据是包含几个字段的 hash:

  • value:数据本身

  • lockUtil:数据锁定到期时间,当某个进程查询缓存无数据,那么先锁定缓存一小段时间,然后查询 DB,然后更新缓存

  • owner:数据锁定者 uuid

证明

因为 Rockscache 方案并不更新缓存,所以只要确保并发读写数据一致性即可。下面来看看 Rockscache 是怎么解决数据不一致的问题,先回忆一遍 cache aside 模式导致的数据不一致的原因。

结合 cache aside 模式出现数据不一致的场景,来讲讲 Rockscache 是怎么解决的。

我们要解决的核心问题是,防止旧值写入到缓存中。Rockscache 的解决方案是这样的:

至此我们已经完成了 rockscache 策略下的缓存更新。不过和其他缓存更新策略一样,我们都默认操作数据库成功后,操作缓存肯定成功。但是这是不对的,在实际操作过程即便操作数据库成功,也可能出现缓存操作失败的情况,因此可以通过以下 3 种方式来保证缓存更新成功:

  • 本地消息表

  • 监听 binlog

  • dtm 的二阶段消息

除了缓存更新,Rockscache 还有以下两种功能:

  • 防止缓存击穿

  • 防止防止穿透和缓存雪崩

这都是非常实用的功能,推荐大家实际使用操作试试看。

参考资料

标签:缓存,一致,删除,数据库,更新,聊聊,一致性,数据
From: https://www.cnblogs.com/upyun/p/17037102.html

相关文章

  • redis 雪崩、穿透、击穿、并发、缓存讲解以及解决方案
    1.缓存雪崩数据未加载到缓存中,或者缓存同一时间大面积的失效,从而导致所有请求都去查数据库,导致数据库CPU和内存负载过高,甚至宕机。 比如一个雪崩的简单过程1.redis......
  • Redis缓存何以一枝独秀?——从百变应用场景与热门面试题中感受下Redis的核心特性与使用
    大家好,又见面了。本文是笔者作为掘金技术社区签约作者的身份输出的缓存专栏系列内容,将会通过系列专题,讲清楚缓存的方方面面。如果感兴趣,欢迎关注以获取后续更新。作......
  • 12.缓存
    1.简介(1)什么是缓存Cache?  存在内存中的临时数据  将用户经常查询的数据放在缓存(内存)中,用户去查询数据就不用从磁盘上(关系型数据库数据文件)查询,从缓存中查询,从而......
  • 在微服务内部,调用另一个微服务,如何保证事务的一致性
    虽然,我们通常建议涉及到事务的情况下,不要在一个微服务里,调用另外一个微服务,但有时也会遇到无法避开的情况,那我们就来看看应该如何保证事务的一致性。我们先来看看微服务A......
  • CPU Cache 高速缓存
    存储器的层次结构从Cache、内存,到SSD和HDD硬盘,一台现代计算机中,就用上了所有这些存储器设备。其中,容量越小的设备速度越快,而且,CPU并不是直接和每一种存储器设备打......
  • SpringBoot @Cacheable 缓存不生效的问题
    背景Springboot+CaffeineCache+使用@Cacheable注解请求查询一个方法,因为数据变化频率低,查询频率高,于是使用缓存,并使用注解。但发现用了@Cacheable这个注解,发现并......
  • Raft一致性共识算法论文学习
    论文地址:https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf看完raft共识算法,脑袋非常懵,所以写一篇学习笔记,记录一下。raft算法主要解决三个模块的问题:领导人选......
  • Redis缓存
    Redis缓存有哪些淘汰策略缓存被写满是不可避免的。即使你精挑细选,确定了缓存容量,还是要面对缓存写满时的替换操作。缓存替换需要解决两个问题:决定淘汰哪些数据,如何处理那......
  • JAVA中使用最广泛的本地缓存?Ehcache的自信从何而来3 —— 本地缓存变身分布式集群缓存
    大家好,又见面了。本文是笔者作为掘金技术社区签约作者的身份输出的缓存专栏系列内容,将会通过系列专题,讲清楚缓存的方方面面。如果感兴趣,欢迎关注以获取后续更新。上......
  • 基于Redis通用缓存
    基于Redis通用缓存redis简介:流程:基于SpringAop切面类进行增强,逻辑如下1.数据进入controller层调用serviceservice调用对应dao方法进行查询前应该先从redis中查......