首页 > 数据库 >一步一步学爬虫(4)数据存储之MySQL存储

一步一步学爬虫(4)数据存储之MySQL存储

时间:2023-01-05 20:31:37浏览次数:51  
标签:存储 一步 age MySQL db cursor sql SQL id

(一步一步学爬虫(4)数据存储之MySQL存储)

4.4 MySQL存储

  关系型数据库是基于关系模型的数据库,而关系模型是通过二维表来保存的,所以它的存储方式就是行列组成的表,每一列是一个字段,每一行是一条记录。表可以看作某个实体的集合,而实体之间存在联系,这就需要表与表之间的关联关系来体现,如主键外键的关联关系。多个表组成一个数据库,也就是关系型数据库。

  关系型数据库有多种,如 SQLite、MySQL、Oracle、SQL Server、DB2 等,本节我们主要来了解下 MySQL 数据库的存储操作。

  在 Python2中,连接 MySQL 的库大多是使用 MySQLdb,但是此库的官方并不支持 Python 3,所以这里推荐使用的库是 PyMySQL。本节中,我们就来讲解使用 PyMySQL 操作 MySQL 数据库的方法。

4.4.1 准备工作

  在开始之前,请确保已经安装好了 MySQL 数据库并保证它能正常运行,安装方式可以参考:https://setup.scrape.center/mysql。

  除了安装好 MySQL 数据外,还需要安装好 PyMySQL 库,如尚未安装 PyMySQL,可以使用 pip3 来安装:

  pip3 install pymysql   更详细的安装方式可以参考:https://setup.scrape.center/pymysql

  二者都安装好了之后,我们就可以开始本节的学习了。

4.4.2 连接数据库

  这里首先尝试连接一下数据库。假设当前的 MySQL 运行在本地,用户名为 root,密码为 123456,运行端口为 3306。这里利用 PyMySQL 先连接 MySQL,然后创建一个新的数据库,名字叫作 spiders,代码如下:

import pymysql

db = pymysql.connect(host='localhost',user='root', password='123456', port=3306)
cursor = db.cursor()
cursor.execute('SELECT VERSION()')
data = cursor.fetchone()
print('Database version:', data)
cursor.execute("CREATE DATABASE spiders DEFAULT CHARACTER SET utf8mb4")
db.close()

  运行结果如下:   Database version: ('8.0.19',)   这里通过 PyMySQL 的 connect 方法声明一个 MySQL 连接对象 db,此时需要传入 MySQL 运行的 host(即 IP)。由于 MySQL 在本地运行,所以传入的是 localhost。如果 MySQL 在远程运行,则传入其公网 IP 地址。后续的参数 user 即用户名,password 即密码,port 即端口(默认为 3306)。

  连接成功后,需要再调用 cursor 方法获得 MySQL 的操作游标,利用游标来执行 SQL 语句。这里我们执行了两句 SQL,直接用 execute 方法执行即可。第一句 SQL 用于获得 MySQL 的当前版本,然后调用 fetchone 方法获得第一条数据,也就得到了版本号。第二句 SQL 执行创建数据库的操作,数据库名叫作 spiders,默认编码为 UTF-8。由于该语句不是查询语句,所以直接执行后就成功创建了数据库 spiders。接着,再利用这个数据库进行后续的操作。

4.4.3 创建表

  一般来说,创建数据库的操作只需要执行一次就好了。当然,我们也可以手动创建数据库。以后,我们的操作都在 spiders 数据库上执行。   创建数据库后,在连接时需要额外指定一个参数 db。   接下来,新创建一个数据表 students,此时执行创建表的 SQL 语句即可。这里指定 3 个字段,结构如表 4- 所示。   表 4- 数据表 students

字段名 含义 类型
name 学号 varchar
age 年龄 int

  创建该表的示例代码如下:

import pymysql

db = pymysql.connect(host='localhost', user='root', password='123456', port=3306, db='spiders')
cursor = db.cursor()
sql = 'CREATE TABLE IF NOT EXISTS students (id VARCHAR(255) NOT NULL, name VARCHAR(255) NOT NULL, age INT NOT NULL, PRIMARY KEY (id))'
cursor.execute(sql)
db.close()

  运行之后,我们便创建了一个名为 students 的数据表。

  当然,为了演示,这里只指定了最简单的几个字段。实际上,在爬虫过程中,我们会根据爬取结果设计特定的字段。

4.4.4 插入数据

  下一步就是向数据库中插入数据了。例如,这里爬取了一个学生信息,学号为 20120001,名字为 Bob,年龄为 20,那么如何将该条数据插入数据库呢?示例代码如下:

import pymysql

id = '20120001'
user = 'Bob'
age = 20

db = pymysql.connect(host='localhost', user='root', password='123456', port=3306, db='spiders')
cursor = db.cursor()
sql = 'INSERT INTO students(id, name, age) values(%s, %s, %s)'
try:
    cursor.execute(sql, (id, user, age))
    db.commit()
except:
    db.rollback()
db.close()

  这里首先构造了一个 SQL 语句,其值没有用字符串拼接的方式来构造,如:

sql = 'INSERT INTO students(id, name, age) values(' + id + ', ' + name + ', ' + age + ')'

  这样的写法烦琐而且不直观,所以我们选择直接用格式化符 %s 来实现。有几个 value 写几个 %s,我们只需要在 execute 方法的第一个参数传入该 SQL 语句,value 值用统一的元组传过来就好了。这样的写法既可以避免字符串拼接的麻烦,又可以避免引号冲突的问题。   之后值得注意的是,需要执行 db 对象的 commit 方法才可以实现数据插入,这个方法才是真正将语句提交到数据库执行的方法。对于数据插入、更新、删除操作,都需要调用该方法才能生效。   接下来,我们加了一层异常处理。如果执行失败,则调用 rollback 执行数据回滚,相当于什么都没有发生过。   这里涉及事务的问题。事务机制可以确保数据的一致性,也就是这件事要么发生了,要么没有发生。比如插入一条数据,不会存在插入一半的情况,要么全部插入,要么都不插入,这就是事务的原子性。另外,事务还有 3 个属性 —— 一致性、隔离性和持久性。这 4 个属性通常称为 ACID 特性,具体如表 4- 所示。   表 4- 事务的 4 个属性

属性 解释
原子性(atomicity) 事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做
一致性(consistency) 事务必须使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的
隔离性(isolation) 一个事务的执行不能被其他事务干扰,即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰
持久性(durability) 持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响

  插入、更新和删除操作都是对数据库进行更改的操作,而更改操作都必须为一个事务,所以这些操作的标准写法就是:

try:
    cursor.execute(sql)
    db.commit()
except:
    db.rollback()

  这样便可以保证数据的一致性。这里的 commit 和 rollback 方法就为事务的实现提供了支持。   上面数据插入的操作是通过构造 SQL 语句实现的,但是很明显,这有一个极其不方便的地方,比如突然增加了性别字段 gender,此时 SQL 语句就需要改成:

INSERT INTO students(id, name, age, gender) values(%s, %s, %s, %s)

  相应的元组参数则需要改成:

(id, name, age, gender)

  这显然不是我们想要的。在很多情况下,我们要达到的效果是插入方法无须改动,做成一个通用方法,只需要传入一个动态变化的字典就好了。比如,构造这样一个字典:

{
    'id': '20120001',
    'name': 'Bob',
    'age': 20
}

  然后 SQL 语句会根据字典动态构造,元组也动态构造,这样才能实现通用的插入方法。所以,这里我们需要改写一下插入方法:

data = {
    'id': '20120001',
    'name': 'Bob',
    'age': 20
}
table = 'students'
keys = ', '.join(data.keys())
values = ', '.join(['%s'] * len(data))
sql = 'INSERT INTO {table}({keys}) VALUES ({values})'.format(table=table, keys=keys, values=values)
try:
   if cursor.execute(sql, tuple(data.values())):
       print('Successful')
       db.commit()
except:
    print('Failed')
    db.rollback()
db.close()

  这里我们传入的数据是字典,并将其定义为 data 变量。表名也定义成变量 table。接下来,就需要构造一个动态的 SQL 语句了。

  首先,需要构造插入的字段 id、name 和 age。这里只需要将 data 的键名拿过来,然后用逗号分隔即可。所以 ', '.join(data.keys()) 的结果就是 id, name, age,然后需要构造多个 %ss 当作占位符,有几个字段构造几个即可。比如,这里有三个字段,就需要构造 %s, %s, %s。这里首先定义了长度为 1 的数组 ['%s'],然后用乘法将其扩充为 ['%s', '%s', '%s'],再调用 join 方法,最终变成 %s, %s, %s。最后,我们再利用字符串的 format 方法将表名、字段名和占位符构造出来。最终的 SQL 语句就被动态构造成了:

INSERT INTO students(id, name, age) VALUES (%s, %s, %s)

  最后,为 execute 方法的第一个参数传入 sql 变量,第二个参数传入 data 的键值构造的元组,就可以成功插入数据了。   如此以来,我们便实现了传入一个字典来插入数据的方法,不需要再去修改 SQL 语句和插入操作了。

4.4.5 更新数据

  数据更新操作实际上也是执行 SQL 语句,最简单的方式就是构造一个 SQL 语句,然后执行:

sql = 'UPDATE students SET age = %ss WHERE name = %s'
try:
   cursor.execute(sql, (25, 'Bob'))
   db.commit()
except:
   db.rollback()
db.close()

  这里同样用占位符的方式构造 SQL,然后执行 execute 方法,传入元组形式的参数,同样执行 commit 方法执行操作。如果要做简单的数据更新的话,完全可以使用此方法。

  但是在实际的数据抓取过程中,大部分情况下需要插入数据,但是我们关心的是会不会出现重复数据,如果出现了,我们希望更新数据而不是重复保存一次。另外,就像前面所说的动态构造 SQL 的问题,所以这里可以再实现一种去重的方法,如果数据存在,则更新数据;如果数据不存在,则插入数据。另外,这种做法支持灵活的字典传值。示例如下:

data = {
    'id': '20120001',
    'name': 'Bob',
    'age': 21
}

table = 'students'
keys = ', '.join(data.keys())
values = ', '.join(['%s'] * len(data))

sql = 'INSERT INTO {table}({keys}) VALUES ({values}) ON DUPLICATE KEY UPDATE '.format(table=table, keys=keys, values=values)
update = ','.join(["{key} = %s".format(key=key) for key in data])
sql += update
try:
    if cursor.execute(sql, tuple(data.values())*2):
        print('Successful')
        db.commit()
except:
    print('Failed')
    db.rollback()
db.close()

  这里构造的 SQL 语句其实是插入语句,但是我们在后面加了 ON DUPLICATE KEY UPDATE。这行代码的意思是如果主键已经存在,就执行更新操作。比如,我们传入的数据 id 仍然为 20120001,但是年龄有所变化,由 20 变成了 21,此时这条数据不会被插入,而是直接更新 id 为 20120001 的数据。完整的 SQL 构造出来是这样的:

INSERT INTO students(id, name, age) VALUES (%s, %s, %s) ON DUPLICATE KEY UPDATE id = %s, name = %s, age = %s

  这里就变成了 6 个 %ss。所以在后面的 execute 方法的第二个参数元组就需要乘以 2 变成原来的 2 倍。

  如此一来,我们就可以实现主键不存在便插入数据,存在则更新数据的功能了。

4.4.6 删除数据

  删除操作相对简单,直接使用 DELETE 语句即可,只是需要指定要删除的目标表名和删除条件,而且仍然需要使用 db 的 commit 方法才能生效。示例如下:

table = 'students'
condition = 'age > 20'

sql = 'DELETE FROM  {table} WHERE {condition}'.format(table=table, condition=condition)
try:
    cursor.execute(sql)
    db.commit()
except:
    db.rollback()

db.close()

  因为删除条件多种多样,运算符有大于、小于、等于、LIKE 等,条件连接符有 AND、OR 等,所以不再继续构造复杂的判断条件。这里直接将条件当作字符串来传递,以实现删除操作。

4.4.7 查询数据

  说完插入、修改和删除等操作,还剩下非常重要的一个操作,那就是查询。查询会用到 SELECT 语句,示例如下:

sql = 'SELECT * FROM students WHERE age >= 20'

try:
    cursor.execute(sql)
    print('Count:', cursor.rowcount)
    one = cursor.fetchone()
    print('One:', one)
    results = cursor.fetchall()
    print('Results:', results)
    print('Results Type:', type(results))
    for row in results:
        print(row)
except:
    print('Error')
运行结果如下:

Count: 4
One: ('20120001', 'Bob', 25)
Results: (('20120011', 'Mary', 21), ('20120012', 'Mike', 20), ('20120013', 'James', 22))
Results Type: <class 'tuple'>
('20120011', 'Mary', 21)
('20120012', 'Mike', 20)
('20120013', 'James', 22)

  这里我们构造了一条 SQL 语句,将年龄 20 岁及以上的学生查询出来,然后将其传给 execute 方法。注意,这里不再需要 db 的 commit 方法。接着,调用 cursor 的 rowcount 属性获取查询结果的条数,当前示例中是 4 条。

  然后我们调用了 fetchone 方法,这个方法可以获取结果的第一条数据,返回结果是元组形式,元组的元素顺序跟字段一一对应,即第一个元素就是第一个字段 id,第二个元素就是第二个字段 name,以此类推。随后,我们又调用了 fetchall 方法,它可以得到结果的所有数据。然后将其结果和类型打印出来,它是二重元组,每个元素都是一条记录,我们将其遍历输出出来。

  但是这里需要注意一个问题,这里显示的是 3 条数据而不是 4 条,fetchall 方法不是获取所有数据吗?这是因为它的内部实现有一个偏移指针用来指向查询结果,最开始偏移指针指向第一条数据,取一次之后,指针偏移到下一条数据,这样再取的话,就会取到下一条数据了。我们最初调用了一次 fetchone 方法,这样结果的偏移指针就指向下一条数据,fetchall 方法返回的是偏移指针指向的数据一直到结束的所有数据,所以该方法获取的结果就只剩 3 个了。

  此外,我们还可以用 while 循环加 fetchone 方法来获取所有数据,而不是用 fetchall 全部一起获取出来。fetchall 会将结果以元组形式全部返回,如果数据量很大,那么占用的开销会非常高。因此,推荐使用如下方法来逐条取数据:

sql = 'SELECT * FROM students WHERE age >= 20'
try:
    cursor.execute(sql)
    print('Count:', cursor.rowcount)
    row = cursor.fetchone()
    while row:
        print('Row:', row)
        row = cursor.fetchone()
except:
    print('Error')

  这样每循环一次,指针就会偏移一条数据,随用随取,简单高效。

4.4.8 总结

  本节我们了解了如何使用 PyMySQL 操作 MySQL 数据库以及一些 SQL 语句的构造方法,后面我们会在实战案例中应用这些操作来存储数据。

  本节代码:https://github.com/Python3WebSpider/MySQLTest。

标签:存储,一步,age,MySQL,db,cursor,sql,SQL,id
From: https://blog.51cto.com/u_15930659/5991849

相关文章

  • MySQL联合索引
    eg,表t中含有abcde五个字段,a为主键,bcd有联合索引CREATETABLE`t`(`a`intprimarykey,`b`int,`c`int,`d`int,`e`varchar(20))ENGINE=InnoDB;c......
  • Ajax+WCF+MySQL实现数据库部署并调用
    ​         最近的数据库课程要求将MySQL数据库部署在服务器上,参考了大佬们的博客后,总结一下。    先放上参考的大佬们的博客。        【原......
  • ubuntu关闭mysql开机自启动
    TodisableMySQLfromstartingautomaticallyatboottimeonUbuntu,followthesesteps:Openaterminalwindow.UsethefollowingcommandtostoptheMySQLs......
  • window下MySQL的压缩包方式安装--单版本或多版本(5.7和8共存)通用
    环境:win11MySQL版本:5.7和8.311.下载MySQL数据库注意:记得查看自己电脑是32位还是64位的,这里下的64位的,64位的电脑可以用32位的包,32位的用64的包可能有问题8版本官网下......
  • 重磅发布丨从云原生到Serverless,先行一步看见更大的技术想象力
    2022年12月28日,以“原生万物云上创新”为主题的第三届云原生实战峰会在线上举行。会上,阿里云提出激活企业应用构建三大范式,并发布云原生可观测套件、企业级分布式应用服务E......
  • mysql学习笔记
    1、​​MySQL索引详细介绍​​2、MySql索引实现原理索引的本质MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构提取句子主干,就可以得到索引的本质:索......
  • 重磅发布丨从云原生到Serverless,先行一步看见更大的技术想象力
    2022年12月28日,以“原生万物云上创新”为主题的第三届云原生实战峰会在线上举行。会上,阿里云提出激活企业应用构建三大范式,并发布云原生可观测套件、企业级分布式应用服......
  • shell备份mysql数据库指定表
    1、先执行命令:netstat -ln |grep mysql获取当前mysql的socket  2、执行如下命令备份数据库的指定表mysqldump -hIP-P端口-u数据库用户-p数据库密码--sock=......
  • 一个查找mysql数据库无主键表的脚本
    说明:遍历所有的库表然后查询是否具有主键/bin/bashdb_host=172.19.211.2#dbipdb_name_list="chimessoxrayintcommpultus"#填写db_name支持多个数据库,以空格隔......
  • Sqlserver,Mysql基础SQL语句
    Sqlserver,Mysql基础SQL语句SqlServer建表CREATETABLE[IFNOTEXISTS]表名( 字段名列类型[属性], 字段名列类型[属性], ....... 字段名列类型[属性]);......