首页 > 数据库 >MongoDB 索引类型介绍

MongoDB 索引类型介绍

时间:2022-12-18 23:00:34浏览次数:41  
标签:name MongoDB age db 索引 字段 类型 id

转载请注明出处: 目录   1.单字段索引    2.复合索引    3.多key索引

  4.其他类型索引    5.索引额外属性    6.MongoDB 索引相关的常用sql命令

MongoDB 支持多种类型的索引,包括单字段索引、复合索引、多 key 索引、文本索引等,每种类型的索引有不同的使用场合。

1.单字段索引

  语法

db_name.table_Name.createIndex( {field: 1|-1} )

  参数       

名称描述
db_name 数据库名
table_Name 集合名
field 要创建的索引的字段

  说明

  索引字段后面的 1 表示升序索引,-1 表示降序索引,对于单字段索引,升序/降序效果是一样的。

  最常见的单字段索引为 id 的默认索引 ,所有mongodb默认都有一个id字段索引,如果我们不指定id的值会自动生成一个ObjectId值。 该id索引是唯一的,并且可以防止客户端对id字段值相同插入两个,

  示例如下:

replica:PRIMARY> db.getCollection('operate_log').find();
{ "_id" : ObjectId("6052e8bbe4b0680bbfb5e26b"), "operateType" : 1, "operateResult" : 1 }
{ "_id" : ObjectId("60542024e4b0368d0812be68"), "operateType" : 1, "operateResult" : 1 }
{ "_id" : ObjectId("60542024e4b0368d0812be6a"), "operateType" : 1, "operateResult" : 1 }
{ "_id" : ObjectId("60542057e4b0368d0812be6c"), "operateType" : 1, "operateResult" : 1 }
{ "_id" : ObjectId("605442a2e4b0368d0812be6e"), "operateType" : 1, "operateResult" : 1 }

2.复合索引

  语法

db_name.table_Name.createIndex( {field1: 1|-1, field2: 1|-1} )

  参数

名称描述
db_name 数据库名
table_Name 集合名
field1 要创建的索引的字段
field2 要创建的索引的字段

  说明

  它针对多个字段联合创建索引,先按第一个字段排序,第一个字段相同的文档按第二个字段排序。

  比如,我们创建如下复合索引:

db.person.createIndex( {age: 1, name: 1} ) 

  上述索引对应的数据组织类似下表,与 {age: 1} 索引不同的时,当 age 字段相同时,再根据 name 字段进行排序,所以 pos5 对应的文档排在 pos3 之前。

AGE,NAME位置信息
18,adam pos5
18,jack pos3
19,jack pos1
20,rose pos2
21,tony pos4

  复合索引能满足的查询场景比单字段索引更丰富,不光能满足多个字段组合起来的查询,比如 db.person.find( {age: 18, name: “jack”} ),也能满足所以能匹配符合索引前缀的查询,这里 {age: 1} 即为 {age: 1, name: 1} 的前缀,所以类似 db.person.find( {age: 18} ) 的查询也能通过该索引来加速。

  但 db.person.find( {name: “jack”} ) 则无法使用该复合索引。如果经常需要根据 name 字段以及 name 和 age 字段组合来查询,则应该创建如下的复合索引:

db.person.createIndex( {name: 1, age: 1} ) 

  除了查询的需求能够影响索引的顺序,字段的值分布也是一个重要的考量因素,即使 person 集合所有的查询都是 name 和 age 字段组合(指定特定的 name 和 age),字段的顺序也是有影响的。

  age 字段的取值很有限,即拥有相同 age 字段的文档会有很多;而 name 字段的取值则丰富很多,拥有相同 name 字段的文档很少;显然先按 name 字段查找,再在相同 name 的文档里查找 age 字段更为高效。

3.多key索引

  语法

db_name.table_Name.createIndex( {field: 1|-1} )

  参数

名称描述
db_name 数据库名
table_Name 集合名
field 要创建的索引的字段,这里的 field 可以是数组类型

  说明

  当索引的字段为数组时,创建出的索引称为多 key 索引,多 key 索引会为数组的每个元素建立一条索引,比如 person 表加入一个 habbit 字段(数组)用于描述兴趣爱好,需要查询有相同兴趣爱好的人就可以利用 habbit 字段的多 key 索引。

  比如如下代码:

{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}
db.person.createIndex( {habbit: 1} )  // 自动创建多key索引
db.person.find( {habbit: "football"} )

4.其他类型索引

  哈希索引(Hashed Index)是指按照某个字段的 hash 值来建立索引,目前主要用于 MongoDB Sharded Cluster 的 Hash 分片,hash 索引只能满足字段完全匹配的查询,不能满足范围查询等。

  地理位置索引(Geospatial Index)能很好的解决 O2O 的应用场景,比如查找附近的美食、查找某个区域内的车站等。

  文本索引(Text Index)能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。

5.索引额外属性

  MongoDB 除了支持多种不同类型的索引,还能对索引定制一些特殊的属性。

属性描述
唯一索引 (unique index) 保证索引对应的字段不会出现相同的值,比如 _id 索引就是唯一索引
TTL索引 可以针对某个时间字段,指定文档的过期时间(经过指定时间后过期或在某个时间点过期)
部分索引 (partial index) 只针对符合某个特定条件的文档建立索引,3.2 版本才支持该特性
稀疏索引(sparse index) 只针对存在索引字段的文档建立索引,可看做是部分索引的一种特殊情况

6.MongoDB 索引相关的常用sql命令

# 添加/修改索引
db.users.ensureIndex({name:"text"});

# 删除集合所有索引
db.users.dropIndexes();

# 删除特定索引 (删除id字段升序的索引)
db.users.dropIndex({"id":1})

# 获取集合索引
db.users.getIndexes();

# 重构索引
db.users.reIndex();

 

标签:name,MongoDB,age,db,索引,字段,类型,id
From: https://www.cnblogs.com/zjdxr-up/p/16991208.html

相关文章