首页 > 编程语言 >前端 AI 应用开发实战:构建高性能的 AI 辅助编程系统

前端 AI 应用开发实战:构建高性能的 AI 辅助编程系统

时间:2024-12-13 22:21:52浏览次数:5  
标签:return string AI 编程 suggestions 高性能 context const

"能不能让 AI 直接在我的代码编辑器里帮我写代码?"两个月前,我们团队接到了这样一个挑战。作为一名前端工程师,我深知在浏览器中构建一个复杂的 AI 编程助手并非易事。今天,我想分享我们是如何一步步实现这个系统的。

标签:return,string,AI,编程,suggestions,高性能,context,const
From: https://www.cnblogs.com/yuanyanglu/p/18605997

相关文章

  • 转载:【AI系统】推理引擎示例:AscendCL
    AscendCL作为华为Ascend系列AI处理器的软件开发框架,为用户提供了强大的编程支持。通过AscendCL,开发者可以更加高效地进行AI应用的开发和优化,从而加速AI技术在各个领域的应用和落地。AscendCL的易用性和高效性,使得它成为开发AI应用的重要工具之一。本文将介绍Ascend......
  • 转载:【AI系统】昇腾推理引擎 MindIE
    本文将介绍华为昇腾推理引擎MindIE的详细内容,包括其基本介绍、关键功能特性以及不同组件的详细描述。本文内容将深入探讨MindIE的三个主要组件:MindIE-Service、MindIE-Torch和MindIE-RT,以及它们在服务化部署、大模型推理和推理运行时方面的功能特性和应用场景。通过本文的......
  • 转载:【AI系统】推理参数
    本文将介绍AI模型网络参数方面的一些基本概念,以及硬件相关的性能指标,为后面让大家更了解模型轻量化做初步准备。值得让人思考的是,随着深度学习的发展,神经网络被广泛应用于各种领域,模型性能的提高同时也引入了巨大的参数量和计算量(如下图右所示),一般来说模型参数量越大,精度越高,性......
  • 转载:【AI系统】轻量级CNN模型新进展
    在本文会接着介绍CNN模型的小型化,除了第二篇文章提到的三个模型外,在本文会继续介绍ESPNet系列,FBNet系列,EfficientNet系列和GhostNet系列。ESPNet系列ESPNetV1ESPNetV1:应用在高分辨图像下的语义分割,在计算、内存占用、功耗方面都非常高效。主要贡献在于基于传统卷积模......
  • 转载:【AI系统】轻量级CNN模型综述
    神经网络模型被广泛的应用于工业领域,并取得了巨大成功。然而,由于存储空间以及算力的限制,大而复杂的神经网络模型是难以被应用的。首先由于模型过于庞大,计算参数多(如下图所示),面临内存不足的问题。其次某些场景要求低延迟,或者响应要快。所以,研究小而高效的CNN模型至关重要。本......
  • 转载:【AI系统】ShuffleNet 系列
    本文会介绍ShuffleNet系列,重点在于其模型结构的轻量化设计,涉及如何降低深度网络计算量,在本文中会着重会讲解逐点分组卷积(PointwiseGroupConvolution)和通道混洗(ChannelShuffle)两种新的运算,而V2版本则会从设备运算速度方面考虑将网络进行轻量化。ShuffleNetV1模型Shu......
  • 转发:【AI系统】指令和存储优化
    除了应用极广的循环优化,在AI编译器底层还存在指令和存储这两种不同优化。指令优化指令优化依赖于硬件提供的特殊加速计算指令。这些指令,如向量化和张量化,能够显著提高计算密度和执行效率。向量化允许我们并行处理数据,而张量化则进一步扩展了这一概念,通过将数据组织成更高维度......
  • 转载:【AI系统】SqueezeNet 系列
    本文将介绍SqueezeNet系列网络,在轻量化模型这个范畴中,Squeezenet是最早的研究。主要针对了一些组件进行轻量化。与以往的网络都只讲网络如何设计不同。SqueezeNext则从硬件角度分析如何加速,从而更全面地了解网络结构的设计。SqueezeNet模型SqueezeNet:是轻量化主干网络中比......
  • 转发:【AI系统】算子循环优化
    在具体硬件执行计算的时候,实际会大量地使用for等循环指令不断地去读取不同的数据执行重复的指令(SIMT/SIMD),因此循环优化主要是为了提升数据的局部性或者计算的并行性,从而提升整体算子性能,当然这二者都需要AI芯片硬件的支持。循环优化挑战数据局部性数据的局部性与计算机存储......
  • 转发:【AI系统】Auto-Tuning 原理
    在硬件平台驱动算子运行需要使用各种优化方式来提高性能,然而传统的手工编写算子库面临各种窘境,衍生出了自动生成高性能算子的的方式,称为自动调优。在本文我们首先分析传统算子库面临的挑战,之后介绍基于TVM的业界领先的三个自动调优系统。高性能算子挑战DNN部署的硬件平台越来......