首页 > 编程语言 >算法中的Top_K 问题总结

算法中的Top_K 问题总结

时间:2022-08-22 10:50:36浏览次数:92  
标签:总结 arr 元素 Top partition 算法 TopK low 排序

写在前面

在人工智能算法岗位的面试中,TopK是问得最多的几个问题之一:

到底有几种方法?

这些方案里蕴含的优化思路究竟是怎么样的?

为啥TopK这么受欢迎呢?究其原因,还是因为它不仅在AI领域广泛应用,比如max pooling,mAP计算等;还涵盖了算法专业的很多必备知识,比如快速排序,二分查找,分治减治,大小顶堆等;一些适当的变换,还可以考察应聘者的思维灵活度。

正文

问题描述:

从arr[1, n]这n个数中,找出最大的k个数,这就是经典的TopK问题。

栗子:

从arr[1, 12]={5,3,7,1,8,2,9,4,7,2,6,6} 这n=12个数中,找出最大的k=5个。

一、排序

img

排序是最容易想到的方法,将n个数排序之后,取出最大的k个,即为所得。

伪代码:

sort(arr, 1, n);

return arr[1, k];

时间复杂度:O(n*lg(n))

分析:明明只需要TopK,却将全局都排序了,这也是这个方法复杂度非常高的原因。那能不能不全局排序,而只局部排序呢?这就引出了第二个优化方法。

二、局部排序

不再全局排序,只对最大的k个排序。

img

冒泡是一个很常见的排序方法,每冒一个泡,找出最大值,冒k个泡,就得到TopK。

伪代码:

for(i=1 to k){

bubble_find_max(arr,i);

}

return arr[1, k];

时间复杂度:O(n*k)

分析:冒泡,将全局排序优化为了局部排序,非TopK的元素是不需要排序的,节省了计算资源。不少朋友会想到,需求是TopK,是不是这最大的k个元素也不需要排序呢?这就引出了第三个优化方法。

三、堆

思路:只找到TopK,不排序TopK。

img

先用前k个元素生成一个小顶堆,这个小顶堆用于存储,当前最大的k个元素。

img

接着,从第k+1个元素开始扫描,和堆顶(堆中最小的元素)比较,如果被扫描的元素大于堆顶,则替换堆顶的元素,并调整堆,以保证堆内的k个元素,总是当前最大的k个元素。

img

直到,扫描完所有n-k个元素,最终堆中的k个元素,就是猥琐求的TopK。

伪代码:

heap[k] = make_heap(arr[1, k]);

for(i=k+1 to n){

adjust_heap(heep[k],arr[i]);

}

return heap[k];

时间复杂度:O(n*lg(k))

画外音:n个元素扫一遍,假设运气很差,每次都入堆调整,调整时间复杂度为堆的高度,即lg(k),故整体时间复杂度是n*lg(k)。

分析:堆,将冒泡的TopK排序优化为了TopK不排序,节省了计算资源。堆,是求TopK的经典算法,那还有没有更快的方案呢?

四、随机选择

随机选择算在是《算法导论》中一个经典的算法,其时间复杂度为O(n),是一个线性复杂度的方法。

这个方法并不是所有同学都知道,为了将算法讲透,先聊一些前序知识,一个所有程序员都应该烂熟于胸的经典算法:快速排序。

画外音:

(1)如果有朋友说,“不知道快速排序,也不妨碍我写业务代码呀”…额...

(2)除非校招,我在面试过程中从不问快速排序,默认所有工程师都知道;

其伪代码是:

void quick_sort(int[]arr, int low, inthigh){

if(low== high) return;

int i = partition(arr, low, high);

quick_sort(arr, low, i-1);

quick_sort(arr, i+1, high);

}

其核心算法思想是,分治法。

分治法(Divide&Conquer),把一个大的问题,转化为若干个子问题(Divide),每个子问题“都”解决,大的问题便随之解决(Conquer)。这里的关键词是“都”。从伪代码里可以看到,快速排序递归时,先通过partition把数组分隔为两个部分,两个部分“都”要再次递归。

分治法有一个特例,叫减治法。

减治法(Reduce&Conquer),把一个大的问题,转化为若干个子问题(Reduce),这些子问题中“只”解决一个,大的问题便随之解决(Conquer)。这里的关键词是“只”。

二分查找binary_search,BS,是一个典型的运用减治法思想的算法,其伪代码是:

int BS(int[]arr, int low, inthigh, int target){

if(low> high) return -1;

mid= (low+high)/2;

if(arr[mid]== target) return mid;

if(arr[mid]> target)

return BS(arr, low, mid-1, target);

else

return BS(arr, mid+1, high, target);

}

从伪代码可以看到,二分查找,一个大的问题,可以用一个mid元素,分成左半区,右半区两个子问题。而左右两个子问题,只需要解决其中一个,递归一次,就能够解决二分查找全局的问题。

通过分治法与减治法的描述,可以发现,分治法的复杂度一般来说是大于减治法的:

快速排序:O(n*lg(n))

二分查找:O(lg(n))

话题收回来,快速排序的核心是:

i = partition(arr, low, high);

这个partition是干嘛的呢?

顾名思义,partition会把整体分为两个部分。

更具体的,会用数组arr中的一个元素(默认是第一个元素t=arr[low])为划分依据,将数据arr[low, high]划分成左右两个子数组:

左半部分,都比t大

右半部分,都比t小

中间位置i是划分元素

img

以上述TopK的数组为例,先用第一个元素t=arr[low]为划分依据,扫描一遍数组,把数组分成了两个半区:

左半区比t大

右半区比t小

中间是t

partition返回的是t最终的位置i。

很容易知道,partition的时间复杂度是O(n)。

画外音:把整个数组扫一遍,比t大的放左边,比t小的放右边,最后t放在中间N[i]。

partition和TopK问题有什么关系呢?

TopK是希望求出arr[1,n]中最大的k个数,那如果找到了第k大的数,做一次partition,不就一次性找到最大的k个数了么?

画外音:即partition后左半区的k个数。

问题变成了arr[1, n]中找到第k大的数。

再回过头来看看第一次partition,划分之后:

i = partition(arr, 1, n);

如果i大于k,则说明arr[i]左边的元素都大于k,于是只递归arr[1, i-1]里第k大的元素即可;

如果i小于k,则说明说明第k大的元素在arr[i]的右边,于是只递归arr[i+1, n]里第k-i大的元素即可;

画外音:这一段非常重要,多读几遍。

这就是随机选择算法randomized_select,RS,其伪代码如下:

int RS(arr, low, high, k){

if(low== high) return arr[low];

i= partition(arr, low, high);

temp= i-low; //数组前半部分元素个数

if(temp>=k)

return RS(arr, low, i-1, k); //求前半部分第k大

else

return RS(arr, i+1, high, k-i); //求后半部分第k-i大

}

img

这是一个典型的减治算法,递归内的两个分支,最终只会执行一个,它的时间复杂度是O(n)。

再次强调一下:

分治法,大问题分解为小问题,小问题都要递归各个分支,例如:快速排序

减治法,大问题分解为小问题,小问题只要递归一个分支,例如:二分查找,随机选择

通过随机选择(randomized_select),找到arr[1, n]中第k大的数,再进行一次partition,就能得到TopK的结果。

总结

TopK,不难;其思路优化过程,不简单:

全局排序,O(n*lg(n))

局部排序,只排序TopK个数,O(n*k)

堆,TopK个数也不排序了,O(n*lg(k))

分治法,每个分支“都要”递归,例如:快速排序,O(n*lg(n))

减治法,“只要”递归一个分支,例如:二分查找O(lg(n)),随机选择O(n)

TopK的另一个解法:随机选择+partition

转载并整理于 https://zhuanlan.zhihu.com/p/76734219 仅供个人学习

标签:总结,arr,元素,Top,partition,算法,TopK,low,排序
From: https://www.cnblogs.com/success-zh/p/16612019.html

相关文章

  • 算法---二叉树的前序遍历
    知识点树递归dfs广度优先搜索(BFS)描述给你二叉树的根节点root,返回它节点值的前序遍历。数据范围:二叉树的节点数量满足0≤n≤100 0\len\le100\0≤......
  • Python批量处理文件的方法总结(包括folder、txt、xml、excel)
    一、使用Python批量创建folder主要用到的库就是os;代码运行的结果是:在指定文件夹下创建一组文件夹。part1:代码:importos#导入os模块......
  • Linux 基础知识总结
    Linux目录结构总结/:根目录,一般根目录下只存放目录,在Linux下有且只有一个根目录。所有的东西都是从这里开始。当你在终端里输入“/home”,你其实是在告诉电脑,先从/(根目录)开......
  • Oracle 序列学习与使用总结
    Oracle序列学习与使用总结by:授客QQ:1033553122简述序列是oracle提供的用于生成一系列数字的数据库对象,序列会自动生成顺序递增的序列号,可用于提供唯一的自动递增主键。......
  • AtCoder Beginner Contest 265赛后总结
    生日打了场AtcoderBeginner还可以吧……做出了前四道题,第五、六题是dp方程没想出来QwQA-Apple水题+1,感谢atcoder把坑都亮出来QwQ……分两种情况讨论:三个一卖的比(一个......
  • 调度算法的笔记
    1.调度算法的种类2.各个调度算法的具体示例(1)先来先服务算法(FCFS)(2)短进程优先算法(SPF)短进程优先(非抢占式)短进程优先(抢占式)(3)高响应比优先算法(HRRN)(4)时......
  • **面试总结
    hs面试总结:1服务器传输命令scp:远程文件拷贝程序,是securecopyprogram的的缩写-r(递归)2.查看服务器运行情况以及cpu,运用哪个命令top:查看服务器各个进程情......
  • [莫比乌斯反演]一些常用公式总结
    一.莫比乌斯反演公式$$$\qquad\qquad\qquad\qquad\qquad$设$F(n)=\sum\limits_{d|n}f(d)$,那么有$f(n)=\sum\limits_{d|n}\mu(d)F(\frac{n}{d})$其中$\mu(d)$......
  • 一致性哈希算法
    一致性哈希算法主要应用于Redis分布式缓存问题引出在单节点的情况下,Redis缓存不用担心命中率的问题,但是一旦上升到分布式的架构中,可能会造成一台机器有缓存而另一台机器......
  • 【MySQL】MySQL总结
    目录1.数据库1.1数据库本质1.2数据库分类1.3SQL与NoSQL1.4数据库重要概念1.5数据库存储引擎1.5.1定义1.5.2存储引擎1.5.3不同存储引擎之间底层文件的区别2.针对......