首页 > 编程语言 >C++ ──── 红黑树的实现

C++ ──── 红黑树的实现

时间:2024-11-01 23:44:50浏览次数:5  
标签:Node cur parent 实现 C++ 红黑树 root col

目录

1.红黑树的概念

2 . 红黑树的性质

3.  红黑树节点的定义

4. 红黑树的插入操作 

5.  红黑树的验证

6. 红黑树的删除

7.  红黑树与AVL树的比较

8.  红黑树的应用

总代码:


1.红黑树的概念

        红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

2 . 红黑树的性质

        1. 每个结点不是红色就是黑色

        2. 根节点是黑色的 

        3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 

        4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 

        5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

        思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点 个数的两倍?

3.  红黑树节点的定义

enum Colour
{
	RED,
	BLACK
};

template <class K, class V>
struct RBTNode
{

	pair<K, V> _kv;
	RBTNode<K, V>* _left;
	RBTNode<K, V>* _right;
	RBTNode<K, V>* _parent;
	Colour _col;

	RBTNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{}
};

4. 红黑树的插入操作 

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

        1. 按照二叉搜索的树规则插入新节点

        2. 检测新节点插入后,红黑树的性质是否造到破坏因为新节点的默认颜色是红色,因此:

        如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;

        但当新插入节点的双亲节点颜色为红色时,就违反了性质三(不能有连在一起的红色节点),此时需要对红黑树分情况来讨论:

        约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

5.  红黑树的验证

红黑树的检测分为两步:

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

2. 检测其是否满足红黑树的性质

bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
		{
			return false;
		}

		// 参考值
		int refNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refNum;
			}

			cur = cur->_left;
		}

		return Check(_root, 0, refNum);
	}


	bool Check(Node* root, int blackNum, const int refNum)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (refNum != blackNum)
			{
				cout << "存在黑色节点的数量不相等的路径" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return Check(root->_left, blackNum, refNum)
			&& Check(root->_right, blackNum, refNum);
	}

6. 红黑树的删除

        红黑树的删除本节不做讲解,有兴趣的同学可参考:《算法导论》或者《STL源码剖析》

http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.html

7.  红黑树与AVL树的比较

        红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(log_2 N),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

8.  红黑树的应用

        1. C++ STL库 -- map/set、mutil_map/mutil_set

        2. Java 库

        3. linux内核

        4. 其他一些库

http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.html

总代码:

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;

enum Colour
{
	RED,
	BLACK
};

template <class K, class V>
struct RBTNode
{

	pair<K, V> _kv;
	RBTNode<K, V>* _left;
	RBTNode<K, V>* _right;
	RBTNode<K, V>* _parent;
	Colour _col;

	RBTNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{}
};


template<class K, class V>
class RBTree
{
	typedef RBTNode<K, V>  Node;
public:

	RBTree()
		:_root(nullptr)
	{}

	RBTree(const RBTree<K, V>& t)
	{
		_root = Copy(t._root);
	}

	~RBTree()
	{
		Destroy(_root);
		_root = nullptr;
	}
	void Inorder()
	{
		_Inorder(_root);
	}
	Node* Find(const K& key)
	{
		//从根开始找
		Node* cur = _root;

		while (cur)
		{

			if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else
			{
				return cur;
			}

		}
		return nullptr;
	}

	bool Insert(const pair<K, V>& kv)
	{
		//第一个结点
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		//从根开始找,看看有没有,没有再插入
		Node* cur = _root;
		Node* parent = nullptr;//parent是要插入位置的父亲
		while (cur != nullptr)
		{

			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				//找到了,不用插入
				return false;
			}
		}

		Node* newNode = new Node(kv);
		//新增节点,颜色给红色
		newNode->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = newNode;
		}
		else
		{
			parent->_left = newNode;
		}
		newNode->_parent = parent;

		cur = newNode;
		//父亲为黑色直接结束
		//父亲节点为红色(出现双红情况),进行处理
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			//      g
			//	 p
			//new
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;

				if (uncle && uncle->_col == RED)// u存在且为红 -》变色再继续往上处理
				{
					//      g
					//	 p    u
					//new
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;
					
					//向上处理
					cur = grandfather;
					parent = cur->_parent;

				}
				else// u不存在或存在且为黑
				{
					//      g		       g
					//	 p			    p     u
					//cur			cur
					if (cur == parent->_left)//右单旋
					{
						RotateR(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else//双旋
					{
						//      g				 g
						//	 p				  p		 u
						//		cur				cur
						RotateL(parent);
						RotateR(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				//    g
				//	u	p
				//		  new
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{

					//      g
					//	 u     p
					//			new
					parent->_col = BLACK;
					uncle->_col = BLACK;
					grandfather->_col = RED;

					//向上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					//      g		        g
					//	 	   p        u      p  
					//			cur			    cur
					if (cur == parent->_right)//单旋
					{
						RotateL(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//       g		         g
						//	 	    p        u       p  
						//		cur			    cur
						RotateR(parent);
						RotateL(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;

				}

			}
		}

		_root->_col = BLACK;
		return true;
	}

	bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
		{
			return false;
		}

		// 参考值
		int refNum = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refNum;
			}

			cur = cur->_left;
		}

		return Check(_root, 0, refNum);
	}


private:
	bool Check(Node* root, int blackNum, const int refNum)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (refNum != blackNum)
			{
				cout << "存在黑色节点的数量不相等的路径" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << root->_kv.first << "存在连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blackNum++;
		}

		return Check(root->_left, blackNum, refNum)
			&& Check(root->_right, blackNum, refNum);
	}

	int _Height(Node* Root)
	{
		if (Root == nullptr)
			return 0;
		int leftHeight = _Height(Root->_left);
		int rightHeight = _Height(Root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	
	void RotateR(Node* parent)
	{
		if (parent == nullptr)
			return;

		Node* SubL = parent->_left;
		Node* SubLR = SubL->_right;
		Node* parent2 = parent->_parent;

		parent->_left = SubLR;
		if (SubLR)
		{
			SubLR->_parent = parent;
		}

		SubL->_right = parent;
		parent->_parent = SubL;

		if (parent2)
		{
			if (parent2->_left == parent)
			{
				parent2->_left = SubL;
			}
			else
			{
				parent2->_right = SubL;
			}
			SubL->_parent = parent2;
		}
		else
		{
			_root = SubL;
			SubL->_parent = nullptr;//容易忘
		}
	}
	void RotateL(Node* parent)
	{
		if (parent == nullptr)
			return;

		Node* SubR = parent->_right;
		Node* SubRL = SubR->_left;
		Node* parent2 = parent->_parent;

		parent->_parent = SubR;
		SubR->_left = parent;

		parent->_right = SubRL;
		if (SubRL)
			SubRL->_parent = parent;

		if (parent2)
		{
			if (parent2->_left == parent)
			{
				parent2->_left = SubR;
			}
			else
			{
				parent2->_right = SubR;
			}
			SubR->_parent = parent2;
		}
		else
		{
			_root = SubR;
			_root->_parent = nullptr;
		}
	}


	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;

		//前序创建树
		Node* newRoot = new  Node(root->_kv.first, root->_kv.second);
		newRoot->_left = Copy(root->_left);
		newRoot->_right = Copy(root->_right);
		return newRoot;
	}
	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;
		//后序毁树
		Destroy(root->_left);
		Destroy(root->_right);

		delete root;
	}
	void _Inorder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second  << endl;
		_Inorder(root->_right);
	}
private:
	Node* _root;
};

void TestRBTree1()
{
	RBTree<int, int> t;
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14,18,26,24,31 };
	for (auto e : a)
	{
		/*if (e == 9)
		{
			int i = 0;
		}*/

		t.Insert({ e, e });

		//cout << e << "->" << t.IsBalanceTree() << endl;
	}

	t.Inorder();
	cout << t.IsBalance() << endl;
}

标签:Node,cur,parent,实现,C++,红黑树,root,col
From: https://blog.csdn.net/m0_73751295/article/details/143443042

相关文章

  • C/C++ 知识点:重载、覆盖和隐藏
    文章目录一、重载、覆盖和隐藏1、重载(overload)1.1、定义1.2、使用`const`关键字1.3、实现原理2、覆盖(override)2.1、定义2.2、覆盖的条件2.3、`override`关键字3、隐藏(hiding)3.1、定义3.2、隐藏的条件3.3、隐藏与覆盖的区别3.4、示例前言:在C++中多态性是一个......
  • 毕业设计-基于springboot与vue实现的个人财务管理系统
    项目简介基于springboot与vue实现的个人财务管理系统,主要包含前后端项目源码,数据库文件,参考论文。1. 登录管理:首先用户输入正确的用户名、密码及对应的角色,然后登录系统,未注册的新用户可自行注册账号后再登录,如果能输入有误,则系统会提示错误信息而无法正常登录。2. 收支......
  • c++:vector
    一、vector是什么?1.1vector的介绍vector是表示可变大小数组的序列容器。 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。本质......
  • C语言入门:扫雷小游戏的实现
        目录一.基本介绍二.创建棋盘三.布置随机雷四.判断并反馈五.总结     一.基本介绍        扫雷,想必大家并不陌生。     这样一个9*9棋盘里,藏着十个雷,我们随便点开一个方格:    这样子,就出现了一些数字,而数字代表这......
  • C++详细笔记(五)
    1.类和对象1.1运算符重载(补)1.运算符重载中,参数顺序和操作数顺序是一致的。2.一般成员函数重载为成员函数,输入流和输出流重载为全局函数。3.由1和2只正常的成员函数默认第一个参数为this指针而重载中参数顺序和操作数顺序要一致,则导致使用时为d<<cout;(不符合使用习惯正常为......
  • 模拟实现字符串函数
    今天给大家分享几个字符串函数的模拟实现,它们分别是strlen,strcpy,strcat函数。这几个函数我上一期已经介绍过了,那么今天我就不过多介绍它们了,今天着重来看它们是如何实现的1.strlen函数我们先看代码这个函数的逻辑便是记录\0之前的字符,那么我们便可以通过计数器来实现,用一......
  • Websocket整合实现聊天操作
    在实际开发中,尤其是web开发,我该如何做才可以实现消息或者数据的实时更新呢。这里我为大家介绍,websocket长连接,它可以简历连接,且创建一个通道,通道中的数据可以实时更新。废话不多说,接下来我将使用vue+springboot基于websocket来实现一个简单的聊天实现。vue前端代码,这里主要......
  • 基于java中的springboot框架实现旅游管理系统项目演示【内附项目源码+论文说明】
    基于java中的springboot框架实现旅游管理系统项目演示【内附项目源码+LW说明】摘要现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本旅游管理系统就是在这样的大环境下诞生,其可以帮助使用者在短时......
  • 基于java中的springboot框架实现经方药食两用服务平台项目演示【内附项目源码+论文说
    基于java中的springboot框架实现经方药食两用服务平台项目演示【内附项目源码+LW说明】摘要近年来,信息化管理行业的不断兴起,使得人们的日常生活越来越离不开计算机和互联网技术。首先,根据收集到的用户需求分析,对设计系统有一个初步的认识与了解,确定经方药食两用服务平台......