首页 > 编程语言 >【机器学习】朴素贝叶斯网络的基本概念以及朴素贝叶斯网络在python中的实例

【机器学习】朴素贝叶斯网络的基本概念以及朴素贝叶斯网络在python中的实例

时间:2024-09-08 23:53:02浏览次数:9  
标签:医生 网络 贝叶斯 推断 节点 朴素

引言

文章目录

一、朴素贝叶斯网络

朴素贝叶斯网络是一种特殊的贝叶斯网络,它假设网络中的所有变量(特征)在给定类变量(目标变量)的条件下都是条件独立的。这种假设使得网络结构非常简单,每个特征节点都直接连接到类节点,而特征节点之间没有连接

1.1 基本概念

1.1.1 节点

  • 类节点(Class Node):表示要预测的变量或类别
  • 特征节点(Feature Nodes):表示用于预测类节点的各个特征

1.1.2 边(Edges)

  • 从类节点指向每个特征节点的有向边,表示类节点对特征节点的影响

1.1.3 条件独立性

  • 朴素贝叶斯网络假设每个特征节点在给定类节点的情况下都是条件独立的,即特征之间不存在依赖关系

1.2 特点

1.2.1 结构简单

  • 由于条件独立性的假设,朴素贝叶斯网络的结构非常简单,每个特征节点仅与类节点有直接联系

1.2.2 易于理解和实现

  • 网络的简单结构使得朴素贝叶斯网络容易理解和实现

1.2.3 计算效率高

  • 由于特征之间的独立性假设,计算后验概率时只需单独考虑每个特征,从而减少了计算量

1.3 应用

朴素贝叶斯网络广泛应用于各种分类问题,特别是在以下场景中:

  • 文本分类:如垃圾邮件检测、情感分析、新闻分类等
  • 医疗诊断:根据病人的症状预测疾病
  • 推荐系统:根据用户的行为和属性推荐商品或服务

1.4 数学表示

朴素贝叶斯网络的数学基础是贝叶斯定理。给定一个数据点 x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1​,x2​,...,xn​)和类别 C C C,朴素贝叶斯分类器计算后验概率 P ( C ∣ X ) P(C|X) P(C∣X)如下:
P ( C ∣ X ) = P ( X ∣ C ) P ( C ) P ( X ) P(C|X) = \frac{P(X|C)P(C)}{P(X)} P(C∣X)=P(X)P(X∣C)P(C)​
由于特征独立性假设,上式可以简化为:
P ( C ∣ X ) ∝ P ( C ) ∏ i = 1 n P ( x i ∣ C ) P(C|X) \propto P(C) \prod_{i=1}^{n} P(x_i|C) P(C∣X)∝P(C)i=1∏n​P(xi​∣C)
其中, P ( C ) P(C) P(C) 是类 C C C的先验概率, P ( x i ∣ C ) P(x_i|C) P(xi​∣C)是在类 C C C下特征 x i x_i xi​的条件概率

1.5 局限性

尽管朴素贝叶斯网络在许多情况下都很有效,但其条件独立性的假设在很多实际问题中并不成立,这可能导致模型性能不如其他不假设特征独立性的模型。然而,由于其实用性和在大量实际应用中的良好表现,朴素贝叶斯网络仍然是机器学习和数据科学中重要的工具之一

二、朴素贝叶斯网络在python中的实例

朴素贝叶斯网络在Python中的实例

2.1 实例背景

朴素贝叶斯网络是一种基于贝叶斯定理的简单概率模型,适用于处理分类问题。在Python中,我们可以使用scikit-learn库来实现朴素贝叶斯网络。以下是一个使用不同数据集的实例——葡萄酒质量分类

2.2 实现步骤

  1. 数据准备:我们将使用葡萄酒质量数据集,该数据集包含了葡萄酒的各种化学特性及其质量评分
  2. 数据预处理:对数据进行标准化处理,以便更好地适用于朴素贝叶斯分类器
  3. 模型训练:使用高斯朴素贝叶斯分类器进行训练
  4. 模型评估:通过交叉验证来评估模型的性能

2.3 python代码

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report
# 加载葡萄酒数据集
wine = load_wine()
X, y = wine.data, wine.target
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# 初始化高斯朴素贝叶斯分类器
gnb = GaussianNB()
# 训练模型
gnb.fit(X_train, y_train)
# 评估模型
y_pred = gnb.predict(X_test)
print(classification_report(y_test, y_pred))
# 使用交叉验证评估模型性能
scores = cross_val_score(gnb, X_scaled, y, cv=5)
print(f"交叉验证平均准确率: {scores.mean()}")

输出结果:
在这里插入图片描述

2.4 代码解释

  • 首先对数据进行了标准化处理
  • 然后使用高斯朴素贝叶斯分类器进行训练和预测
  • 最后通过打印分类报告和计算交叉验证的平均准确率来评估模型的性能
  • 这种方式不仅展示了朴素贝叶斯网络的应用,还体现了数据处理和模型评估的完整流程

三、概率推断在医疗领域中的使用

概率推断在医疗领域扮演着至关重要的角色,它可以帮助医生和研究人员在不确定性下做出更明智的决策

3.1 概率推断在医疗领域的使用

  1. 疾病诊断:通过分析病人的症状、实验室检测结果和病史,概率推断可以预测病人患有某种疾病的概率
  2. 预后评估:预测疾病的发展过程和可能的后果,帮助医生制定治疗计划
  3. 治疗选择:评估不同治疗方案的效果和潜在风险,为患者提供个性化的治疗方案
  4. 疾病流行预测:通过监测数据,预测疾病在人群中的传播概率和趋势

3.2 自动化推断的优势

  1. 速度:自动化系统能够快速处理大量数据,迅速得出推断结果
  2. 一致性:自动化推断可以提供一致的标准化的决策,减少了人为误差
  3. 可扩展性:在面对大规模数据时,自动化系统可以轻松扩展以处理更多的案例
  4. 持续学习:随着更多数据的积累,自动化系统可以通过机器学习不断优化其推断模型

3.3 自动化推断的劣势

  1. 解释性:自动化系统的推断过程可能不够透明,难以向医生和患者解释推断的依据
  2. 数据依赖:推断质量高度依赖于输入数据的质量和完整性
  3. 适应性:自动化系统可能难以适应新的医疗场景或罕见病例

3.4 人类医生的优势

  1. 专业经验:医生具有丰富的临床经验和直觉,可以在复杂情况下做出判断
  2. 情境理解:医生能够考虑患者的整体情况,包括心理和社会因素
  3. 人际交流:医生可以与患者进行有效沟通,提供情感支持和解释决策过程

3.5 人类医生的劣势

  1. 认知负荷:医生可能因为信息过载而犯错,特别是在疲劳或压力大时
  2. 不一致性:不同医生可能对同一情况做出不同的推断,导致治疗标准不统一
  3. 资源限制:医生的时间和精力有限,无法处理大量数据或进行复杂的统计分析

3.6 总结

概率推断的自动化在医疗领域具有巨大的潜力,可以辅助医生做出更准确和高效的决策。然而,它不应完全取代人类医生,而是作为一个辅助工具,结合医生的专业知识和临床经验,共同提升医疗服务的质量和效率

标签:医生,网络,贝叶斯,推断,节点,朴素
From: https://blog.csdn.net/m0_49243785/article/details/141952787

相关文章

  • 【机器学习】马尔可夫随机场的基本概念、和贝叶斯网络的联系与对比以及在python中的实
    引言马尔可夫随机场(MarkovRandomField,简称MRF)是一种用于描述变量之间依赖关系的概率模型,它在机器学习和图像处理等领域有着广泛的应用文章目录引言一、马尔科夫随机场1.1定义1.2特点1.3应用1.4学习算法1.5总结二、选择马尔可夫随机场的学习算法的标准2.1问......
  • 2024年“羊城杯”粤港澳大湾区网络安全大赛Misc 部分解析
    2024年“羊城杯”粤港澳大湾区网络安全大赛Misc部分解析前言:Misc-不一样的数据库_2:Misc-hiden:Misc-miaoro:Misc-so_much:前言:本次解析是后期复现当时没时间打用于交流学习,感谢支持!![X]......
  • 02网络参考模型
    02网络参考模型常见网络模型因为OSI协议栈比较复杂,且TCP和IP两大协议在业界被广泛使用,所以TCP/IP参考模型成为了互联网的主流参考模型。OIS网络模型层级作用7.应用层应用层对应用程序提供接口。6.表示层进行数据格式的转换,以确保一个系统生成的......
  • 每天五分钟玩转深度学习框架PyTorch:将nn的神经网络层连接起来
    本文重点前面我们学习pytorch中已经封装好的神经网络层,有全连接层,激活层,卷积层等等,我们可以直接使用。如代码所示我们直接使用了两个nn.Linear(),这两个linear之间并没有组合在一起,所以forward的之后,分别调用了,在实际使用中我们常常将几个神经层组合在一起,这样不仅操作方便,而且......
  • 【深度学习】嘿马深度学习笔记第8篇:卷积神经网络,学习目标【附代码文档】
    本教程的知识点为:深度学习介绍1.1深度学习与机器学习的区别TensorFlow介绍2.4张量2.4.1张量(Tensor)2.4.1.1张量的类型TensorFlow介绍1.2神经网络基础1.2.1Logistic回归1.2.1.1Logistic回归TensorFlow介绍总结每日作业神经网络与tf.keras1.3神经网络基础......
  • CCPC2024 网络预选赛游记
    没啥可写的啊。考前一天晚上和考试上午做了几套cf。就上来50分钟三个人一直刷新,刷到40分钟刷出来两道签到题题面,然后签了。后来分头开题,J按位确定15分钟,他俩写了3题我都没确定出来,给车昱辉做他说线性基两下就行了。然后做了一个I,读了半天题没读明白。然后题干改写成了每个人......
  • 长短期记忆神经网络-LSTM回归预测-MATLAB代码实现
    一、LSTM简介(代码获取:底部公众号)长短期记忆神经网络(LongShort-TermMemory,LSTM)是一种循环神经网络(RecurrentNeuralNetwork,RNN)的变体。相比于传统的RNN,LSTM能够更好地处理长期依赖关系,适用于许多序列建模任务,包括回归预测。在LSTM中,每个时间步都有一个隐藏状态(hiddenst......
  • 2024CCPC网络赛题解
    前言开局掉线30min比较搞心态,不过比赛延迟了1个小时,但是后面也一直没过题,如果时间再少点可能排名还更好看。最后是8题前面,这里简单讲一下我有写的题,队友写的题就放一下队友的赛时代码,大家自己看看吧。B队友写的,签到,但是数据范围\(n\)给\(10^3\)给队友整不自信了,因为答案的......
  • 网络设备开局配置生成器(第三次更新) QQ交流群:(4817315)
     网络设备开局配置生成器(SecureCRTvbs脚本)QQ交流群:(4817315)一、工具介绍本工具主要是针对简化网络工程师重复繁琐的工作而开发。工具只是将重复工作通过自己配置生成脚本代码来执行,工具的大致功能可以概括为以下几点:1.可以1分钟生成华为、华三、锐捷等交换机的开......
  • 汽车网络安全的未来:将车辆视为端点
    汽车行业面临着许多与其他行业的成功企业相同的网络安全风险和威胁,但它也在应对一些独特的风险和威胁。Nuspire的首席威胁分析师JoshSmith(一家在汽车领域有着深厚根基并保护通用汽车和斯巴鲁等客户的托管安全服务提供商)谈到了当前的风险和威胁,并对汽车网络安全的未来发表......