首页 > 编程语言 >ConcurrentHashMap源码剖析

ConcurrentHashMap源码剖析

时间:2024-09-03 14:04:58浏览次数:13  
标签:Node ConcurrentHashMap hash tab int 剖析 源码 key null

ConcurrentHashMap源码剖析

https://www.bilibili.com/video/BV1Qg41197FG/?spm_id_from=333.337.search-card.all.click&vd_source=273847a809b909b44923e3af1a7ef0b1
ConcurrentHashMap是Hashmap的并发形式。虽然Hashtable也是线程安全的,但是它的并发能力相比于ConcurrentHashMap要低的多。

在jdk1.7的时代ConcurrentHashMap使用分段锁的设计来维护线程安全。

在jdk1.8的时代对其进行了改进,只锁一个节点,提高了并发能力。

image

jdk1.8源码剖析:

public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
    implements ConcurrentMap<K,V>, Serializable {

    // 表的最⼤容量 只能是 2 的 n 次幂,最⼤ 1 << 30, 因为第⼀位是符号位
	private static final int MAXIMUM_CAPACITY = 1 << 30;

    // 默认表的⼤⼩ 最⼩值 1 << 1, 默认值 1 << 4
    private static final int DEFAULT_CAPACITY = 16;

    // 最⼤数组⼤⼩
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    // 默认并发数
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    // 加载因子
    private static final float LOAD_FACTOR = 0.75f;

    // 转化为红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;

    // 由红黑树转换为链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;

    // 转化为红黑树的表的最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;

    // 每次进行转移的最小值
    private static final int MIN_TRANSFER_STRIDE = 16;

    // 生成sizeCtl所使用的bit位数
    private static int RESIZE_STAMP_BITS = 16;

    // 进行扩容所允许的最大线程数
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

    // 记录sizeCtl中的⼤⼩所需要进⾏的偏移位数
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

    // ⼀系列的标识
    static final int MOVED     = -1; // hash for forwarding nodes
    static final int TREEBIN   = -2; // hash for roots of trees
    static final int RESERVED  = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

    // 获取可⽤的CPU个数
    static final int NCPU = Runtime.getRuntime().availableProcessors();
    
    // 进⾏序列化的属性
    private static final ObjectStreamField[] serialPersistentFields = {
        new ObjectStreamField("segments", Segment[].class),
        new ObjectStreamField("segmentMask", Integer.TYPE),
        new ObjectStreamField("segmentShift", Integer.TYPE)
    };

    
    /* ---------------- Fields -------------- */

    // 表
    transient volatile Node<K,V>[] table;

    // 下一个表
    private transient volatile Node<K,V>[] nextTable;

    // 基本计数
    private transient volatile long baseCount;

    // 对表初始化和扩容控制
    private transient volatile int sizeCtl;

    // 扩容下另一个表的索引
    private transient volatile int transferIndex;

    // 旋转锁
    private transient volatile int cellsBusy;

    // counterCell表
    private transient volatile CounterCell[] counterCells;

    // views 视图
    private transient KeySetView<K,V> keySet;
    private transient ValuesView<K,V> values;
    private transient EntrySetView<K,V> entrySet;

    // 添加元素
    public V put(K key, V value) {
        return putVal(key, value, false);
    }
    
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode()); // 计算hash值
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0) // 第一次放的时候,要进行table数组的初始化,也就是懒加载
                tab = initTable(); 
            // tabAt方法用于获取 Node 数组 table(桶)指定下标位置上的 Node 节点
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 计算槽位,如果槽位为空,则可以插入
                // 使用CAS的方式进行插入
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)// 如果该槽位不为空,且正在扩容
                tab = helpTransfer(tab, f); // 协助扩容
            else { // 如果有冲突,则插入链表或红黑树
                V oldVal = null;
                // 将这个节点锁住,这个f就是数组上的节点,相当于是链表或红黑树的头结点
                synchronized (f) {
                    if (tabAt(tab, i) == f) { // 检查头结点是否有变化
                        if (fh >= 0) {// 说明是链表
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 说明是红黑树
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                // 链表转红黑树
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD) // 这里是8的原因是因为hash冲突的概率很小
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount); // 计数,超过sizeCtl会进⾏扩容
        return null;
    }

}


private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // 扩容的时候也用到了CAS
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode()); // 通过key计算hash值,说白了就是计算在数组下标的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;// 如果当前位置存在,则直接拿出来返回就可以了
        }
        // eh=-1,说明当前的数据正被迁移,调用ConcurrentHashMap.ForwardingNode#find方法在新的数组中查找
        // eh=-2,说明该节点是一个TreeBin,此时调用TreeBin的find方法遍历红黑树
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        // 如果还没有找到,奶遍历链表
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
ConcurrentHashMap之所以不会取到脏数据,是因为它的变量被volitile进行了修饰,结合MESI协议能够保证是最新的值。
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;
    // .......
}

jdk1.7源码剖析:

public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
        implements ConcurrentMap<K, V>, Serializable {

	/* ---------------- Constants -------------- */

    static final int DEFAULT_INITIAL_CAPACITY = 16;

    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    static final int MAXIMUM_CAPACITY = 1 << 30;

    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    static final int RETRIES_BEFORE_LOCK = 2;

    /* ---------------- Fields -------------- */

    final int segmentMask;

    final int segmentShift;
    
	// 分段锁设计基于Segment<K,V>[]数组
    final Segment<K,V>[] segments;

    transient Set<K> keySet;
    transient Set<Map.Entry<K,V>> entrySet;
    transient Collection<V> values;

    static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
    	//.......
    }
    
    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
    
    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
    
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }
    
    @SuppressWarnings("unchecked")
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        // concurrencyLevel并发等级,默认是16,最终退出循环的时候ssize=16
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1; 
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        // 初始化HashEntry[]数组
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        // 初始化Segment[]数组
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }
    
    

}

image

标签:Node,ConcurrentHashMap,hash,tab,int,剖析,源码,key,null
From: https://www.cnblogs.com/dongyaotou/p/18394424

相关文章