首页 > 编程语言 >代码随想录算法训练营第四十三天 | 300.最长递增子序列 , 674. 最长连续递增序列 , 718. 最长重复子数组

代码随想录算法训练营第四十三天 | 300.最长递增子序列 , 674. 最长连续递增序列 , 718. 最长重复子数组

时间:2024-08-28 23:52:06浏览次数:15  
标签:nums 递增 result 数组 序列 最长 dp

目录

300.最长递增子序列 

思路

1.dp[i]的定义

2.状态转移方程

3.dp[i]的初始化

4.确定遍历顺序

 5.举例推导dp数组

方法一: 动态规划

方法二:贪心

心得收获 

674. 最长连续递增序列

思路

动态规划

1.确定dp数组(dp table)以及下标的含义

2.确定递推公式

3.dp数组如何初始化

4.确定遍历顺序

5.举例推导dp数组

方法一:动态规划

方法二:动态规划-优化

方法三:贪心

 心得收获

 718. 最长重复子数组 

思路

1.确定dp数组(dp table)以及下标的含义

2.确定递推公式

3.dp数组如何初始化

4.确定遍历顺序

5.举例推导dp数组

方法一:动态规划-二维

方法二:动态规划-一维

方法三:动态规划-二维从ij开始

心得收获


300.最长递增子序列 

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

  • 输入:nums = [0,1,0,3,2,3]
  • 输出:4

示例 3:

  • 输入:nums = [7,7,7,7,7,7,7]
  • 输出:1

提示:

  • 1 <= nums.length <= 2500
  • -10^4 <= nums[i] <= 104

思路

本题也是代码随想录中子序列问题的第一题,如果没接触过这种题目的话,本题还是很难的,甚至想暴力去搜索也不知道怎么搜。 子序列问题是动态规划解决的经典问题,当前下标i的递增子序列长度,其实和i之前的下标j的子序列长度有关系,那又是什么样的关系呢。

接下来,我们依然用动规五部曲来详细分析一波:

1.dp[i]的定义

本题中,正确定义dp数组的含义十分重要。

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢。

2.状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if nums[i] > nums[j]: dp[i] = max(dp[i], dp[j] + 1)

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

3.dp[i]的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

4.确定遍历顺序

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历。

j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

遍历i的循环在外层,遍历j则在内层,代码如下:

for i in range(1, len(nums)):
    for j in range(0, i):
        if nums[i] > nums[j]:
            dp[i] = max(dp[i], dp[j] + 1)
    result = max(result, dp[i]) #取长的子序列

 5.举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

300.最长上升子序列

方法一: 动态规划

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return len(nums)
        dp = [1] * len(nums)
        result = 1
        for i in range(1, len(nums)):
            for j in range(0, i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i], dp[j] + 1)
            result = max(result, dp[i]) #取长的子序列
        return result

方法二:贪心

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return len(nums)
        
        tails = [nums[0]]  # 存储递增子序列的尾部元素
        for num in nums[1:]:
            if num > tails[-1]:
                tails.append(num)  # 如果当前元素大于递增子序列的最后一个元素,直接加入到子序列末尾
            else:
                # 使用二分查找找到当前元素在递增子序列中的位置,并替换对应位置的元素
                left, right = 0, len(tails) - 1
                while left < right:
                    mid = (left + right) // 2
                    if tails[mid] < num:
                        left = mid + 1
                    else:
                        right = mid
                tails[left] = num
        
        return len(tails)  # 返回递增子序列的长度

心得收获 

本题最关键的是要想到dp[i]由哪些状态可以推出来,并取最大值,那么很自然就能想到递推公式:dp[i] = max(dp[i], dp[j] + 1);

674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2:

  • 输入:nums = [2,2,2,2,2]
  • 输出:1
  • 解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

思路

本题相对于昨天的动态规划:300.最长递增子序列 最大的区别在于“连续”。

本题要求的是最长连续递增序列

动态规划

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。

2.确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

注意这里就体现出和动态规划:300.最长递增子序列 的区别!

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]。

这里大家要好好体会一下!

3.dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

4.确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

for (int i = 1; i < nums.size(); i++) {
    if (nums[i] > nums[i - 1]) { // 连续记录
        dp[i] = dp[i - 1] + 1;
    }
}
5.举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

674.最长连续递增序列

注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

方法一:动态规划

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0
        result = 1
        dp = [1] * len(nums)
        for i in range(len(nums)-1):
            if nums[i+1] > nums[i]: #连续记录
                dp[i+1] = dp[i] + 1
            result = max(result, dp[i+1])
        return result

方法二:动态规划-优化

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        if not nums:
            return 0

        max_length = 1
        current_length = 1

        for i in range(1, len(nums)):
            if nums[i] > nums[i - 1]:
                current_length += 1
                max_length = max(max_length, current_length)
            else:
                current_length = 1

        return max_length

方法三:贪心

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0
        result = 1 #连续子序列最少也是1
        count = 1
        for i in range(len(nums)-1):
            if nums[i+1] > nums[i]: #连续记录
                count += 1
            else: #不连续,count从头开始
                count = 1
            result = max(result, count)
        return result

 心得收获

本题也是动规里子序列问题的经典题目,但也可以用贪心来做,大家也会发现贪心好像更简单一点,而且空间复杂度仅是O(1)。

在动规分析中,关键是要理解和动态规划:300.最长递增子序列 的区别。

要联动起来,才能理解递增子序列怎么求,递增连续子序列又要怎么求

概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关

 718. 最长重复子数组 

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:

  • A: [1,2,3,2,1]
  • B: [3,2,1,4,7]
  • 输出:3
  • 解释:长度最长的公共子数组是 [3, 2, 1] 。

提示:

  • 1 <= len(A), len(B) <= 1000
  • 0 <= A[i], B[i] < 100

思路

注意题目中说的子数组,其实就是连续子序列。

要求两个数组中最长重复子数组,如果是暴力的解法 只需要先两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

本题其实是动规解决的经典题目,我们只要想到 用二维数组可以记录两个字符串的所有比较情况,这样就比较好推 递推公式了。 动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )

此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。

其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。

那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

行倒是行! 但实现起来就麻烦一点,需要单独处理初始化部分,在本题解下面的拓展内容里,我给出了 第二种 dp数组的定义方式所对应的代码和讲解,大家比较一下就了解了。

2.确定递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

3.dp数组如何初始化

根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

4.确定遍历顺序

外层for循环遍历A,内层for循环遍历B。

那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?

也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。

同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。

代码如下:

for (int i = 1; i <= nums1.size(); i++) {
    for (int j = 1; j <= nums2.size(); j++) {
        if (nums1[i - 1] == nums2[j - 1]) {
            dp[i][j] = dp[i - 1][j - 1] + 1;
        }
        if (dp[i][j] > result) result = dp[i][j];
    }
}

 

5.举例推导dp数组

拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

718.最长重复子数组

方法一:动态规划-二维

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子数组的长度
        dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
        # 记录最长公共子数组的长度
        result = 0

        # 遍历数组 nums1
        for i in range(1, len(nums1) + 1):
            # 遍历数组 nums2
            for j in range(1, len(nums2) + 1):
                # 如果 nums1[i-1] 和 nums2[j-1] 相等
                if nums1[i - 1] == nums2[j - 1]:
                    # 在当前位置上的最长公共子数组长度为前一个位置上的长度加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                # 更新最长公共子数组的长度
                if dp[i][j] > result:
                    result = dp[i][j]

        # 返回最长公共子数组的长度
        return result

方法二:动态规划-一维

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        # 创建一个一维数组 dp,用于存储最长公共子数组的长度
        dp = [0] * (len(nums2) + 1)
        # 记录最长公共子数组的长度
        result = 0

        # 遍历数组 nums1
        for i in range(1, len(nums1) + 1):
            # 用于保存上一个位置的值
            prev = 0
            # 遍历数组 nums2
            for j in range(1, len(nums2) + 1):
                # 保存当前位置的值,因为会在后面被更新
                current = dp[j]
                # 如果 nums1[i-1] 和 nums2[j-1] 相等
                if nums1[i - 1] == nums2[j - 1]:
                    # 在当前位置上的最长公共子数组长度为上一个位置的长度加一
                    dp[j] = prev + 1
                    # 更新最长公共子数组的长度
                    if dp[j] > result:
                        result = dp[j]
                else:
                    # 如果不相等,将当前位置的值置为零
                    dp[j] = 0
                # 更新 prev 变量为当前位置的值,供下一次迭代使用
                prev = current

        # 返回最长公共子数组的长度
        return result

方法三:动态规划-二维从ij开始

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子数组的长度
        dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
        # 记录最长公共子数组的长度
        result = 0

        # 对第一行和第一列进行初始化
        for i in range(len(nums1)):
            if nums1[i] == nums2[0]:
                dp[i + 1][1] = 1
        for j in range(len(nums2)):
            if nums1[0] == nums2[j]:
                dp[1][j + 1] = 1

        # 填充dp数组
        for i in range(1, len(nums1) + 1):
            for j in range(1, len(nums2) + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    # 如果 nums1[i-1] 和 nums2[j-1] 相等,则当前位置的最长公共子数组长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                if dp[i][j] > result:
                    # 更新最长公共子数组的长度
                    result = dp[i][j]

        # 返回最长公共子数组的长度
        return result


心得收获

前面讲了 dp数组为什么定义:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?

当然可以,就是实现起来麻烦一些。

如果定义 dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,那么 第一行和第一列毕竟要进行初始化,如果nums1[i] 与 nums2[0] 相同的话,对应的 dp[i][0]就要初始为1, 因为此时最长重复子数组为1。 nums2[j] 与 nums1[0]相同的话,同理。

所以代码如下:

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子数组的长度
        dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
        # 记录最长公共子数组的长度
        result = 0

        # 对第一行和第一列进行初始化
        for i in range(len(nums1)):
            if nums1[i] == nums2[0]:
                dp[i + 1][1] = 1
        for j in range(len(nums2)):
            if nums1[0] == nums2[j]:
                dp[1][j + 1] = 1

        # 填充dp数组
        for i in range(1, len(nums1) + 1):
            for j in range(1, len(nums2) + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    # 如果 nums1[i-1] 和 nums2[j-1] 相等,则当前位置的最长公共子数组长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                if dp[i][j] > result:
                    # 更新最长公共子数组的长度
                    result = dp[i][j]

        # 返回最长公共子数组的长度
        return result

大家会发现 这种写法 一定要多写一段初始化的过程。

而且为了让 if dp[i][j] > result: result = dp[i][j] 收集到全部结果,两层for训练一定从0开始遍历,这样需要加上 && i > 0 && j > 0的判断。

标签:nums,递增,result,数组,序列,最长,dp
From: https://blog.csdn.net/m0_61698277/article/details/141652563

相关文章

  • NLP从零开始------15.文本中阶序列处理之语言模型(3)
    4. 注意力机制4.1 注意力机制        循环神经网络的一个主要局限是不能很好地建模长距离依赖,即使像长短期记忆这样的变体也只是改善而不是完全解决了长距离依赖的问题。其根本原因在于,如果序列中的第i个词需要对第j个词(假设j>i)产生影响,需经过j-i个计算步骤, 而......
  • [深度学习] 时间序列分析工具TSLiB库使用指北
    TSLiB是一个为深度学习时间序列分析量身打造的开源仓库。它提供了多种深度时间序列模型的统一实现,方便研究人员评估现有模型或开发定制模型。TSLiB涵盖了长时预测(Long-termforecasting)、短时预测(Short-termforecasting)、缺失值填补(Missingvalueimputation)、异常检测(Anomalyde......
  • thinkPHP6 反序列化
    thinkPHP6反序列化thinkPHPv6.0.0-6.0.3环境搭建新版v6基于PHP7.1+开发php-7.3.4ThinkPHPv6.0.3使用composer进行安装composercreate-projecttopthink/think=6.0.3tp6.0然后利用phpstudy打开框架,简单配置如下子,再同样的道理配置phpstorm的调试。但是万事......
  • 序列化;RPC 【2024年8月28日随笔】
    序列化什么是序列化序列化:把对象转化为可传输的字节序列过程称为序列化反序列化:把字节序列还原为对象的过程称为反序列化为什么序列化序列化机制允许将实现序列化的Java对象转换位字节序列,这些字节序列可以保存在磁盘上,或通过网络传输,以达到以后恢复成原来的对象。序列化机......
  • 代码随想录day43 || 300 最长递增子序列,674 最长连续递增子序列,718 最长重复子数组
    300最长递增子序列varpath[]intvarresintfunclengthOfLIS(nums[]int)int{ //尝试回溯思路 iflen(nums)==1{ return1 } path=[]int{} res=0 backtracking(nums) returnres}funcbacktracking(nums[]int){ iflen(nums)==0{ iflen(pat......
  • 南沙C++陈老师讲题:1078:求分数序列和
    ​【题目描述】【输入】输入有一行,包含一个正整数n(n≤30)n(n≤30)。【输出】输出有一行,包含一个浮点数,表示分数序列前nn项的和,精确到小数点后44位。【输入样例】2【输出样例】3.5000#include<iostream>#include<stdio.h>usingnamespacestd;intmain()......
  • NLP从零开始------14.文本中阶序列处理之语言模型(2)
    3.2长短期记忆        梯度消失问题的一个解决方案是使用循环神经网络的变体——长短期记忆( long short- term memory, LSTM)。        长短期记忆的原理是, 在每一步t, 都保存一个隐状态和一个单元状态( cell state) , 通过单元状态来存储长距离......
  • 13.3 Java对象序列化梳理
    目录13.3Java对象序列化13.3.1 引入13.3.1 对象序列化与对象流1.Serializable接口2.ObjectInputStream类和ObjectOutputStream类13.3.2向ObjectOutputStream中写入对象13.3Java对象序列化13.3.1 引入应用场景:对象的寿命通常随着创建该对象程序的终止而终......
  • 用Python实现时间序列模型实战——Day1:时间序列的基本概念
    一、学习内容1.时间序列数据的定义与特点定义:时间序列数据是一组按时间顺序排列的观测值。时间序列的每个观测值都与特定时间点相关联。例如,气温每天的记录、股票每日的收盘价等。特点:时间依赖性:时间序列数据的一个基本特点是当前数据点可能依赖于之前的一个或多个数据点......
  • Java中的序列化与反序列化深度剖析
    序列化与反序列化在Java开发中扮演了重要角色,特别是在数据持久化、RPC(远程过程调用)以及分布式系统中。本篇博客将详细解析Java中的序列化机制,讨论常见的序列化框架,并提供实际代码示例帮助理解。什么是序列化与反序列化?序列化(Serialization):将Java对象转换为字节流的过程,以便将......