首页 > 编程语言 >回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

时间:2024-08-23 18:25:34浏览次数:11  
标签:NGO 模型 Attention TCN train BiGRU

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

文章目录


前言

回归预测|基于NGO-TCN-BiGRU-Attention的数据预测Matlab程序 多特征输入单输出 含基础模型

一、NGO-TCN-BiGRU-Attention模型

本文介绍了一种基于NGO-TCN-BiGRU-Attention技术的数据回归预测Matlab程序,该程序可以实现多特征输入、单输出,并包含基础模型。该技术可以应用于多种领域的数据预测,例如金融、气象、医疗等。在该模型中,利用北方苍鹰优化算法来优化模型参数,同时采用时域卷积、双向门控递归单元和自注意力机制等技术来提高预测准确率。通过实验结果,该模型在回归预测方面取得了非常优异的效果。

NGO-TCN-BiGRU-Attention 模型详细流程和原理

NGO-TCN-BiGRU-Attention 模型结合了北方苍鹰优化算法(NGO)、时域卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制,用于回归预测。下面详细描述这些组件的原理和建模流程:

1. NGO(北方苍鹰优化算法)

目的:优化模型参数以提升预测性能。

原理

  • 模拟苍鹰的猎食行为进行超参数优化。
  • 包括初始化种群、适应度评估、选择和更新等步骤。

流程

  1. 初始化:生成初始种群。
  2. 评估:计算适应度(例如预测误差)。
  3. 更新:基于猎食行为更新种群。
  4. 迭代:重复更新直到满足停止条件。

2. TCN(时域卷积网络)

目的:处理序列数据,捕捉长程依赖特征。

原理

  • 使用卷积操作代替传统的递归结构来处理序列数据。
  • 通过卷积层和因果卷积捕捉序列中的时间依赖性,避免了长序列训练中的梯度消失问题。

流程

  1. 卷积操作:对输入序列应用卷积核,生成特征图。
  2. 因果卷积:确保输出仅依赖于当前及过去的输入数据。
  3. 激活函数:如ReLU,用于非线性变换。

3. BiGRU(双向门控循环单元)

目的:处理序列数据中的时间依赖性,捕捉双向上下文信息。

原理

  • 双向GRU包含两个GRU层,分别处理序列的正向和反向信息。
  • 通过拼接或加权平均正向和反向的输出,捕捉完整的上下文信息。

流程

  1. 正向GRU:处理序列从前到后的信息。
  2. 反向GRU:处理序列从后到前的信息。
  3. 融合输出:结合正向和反向的输出进行进一步处理。

4. Attention(注意力机制)

目的:增强模型对重要信息的关注能力。

原理

  • 动态计算注意力权重来调整对输入特征的关注程度。
  • 使用注意力权重对输入进行加权求和,生成加权特征。

流程

  1. 计算注意力权重:根据输入特征计算注意力分数。
  2. 加权求和:使用注意力权重对输入特征进行加权。
  3. 输出:生成加权后的特征表示,用于预测。

5. 综合建模流程

1. 数据预处理

  • 处理缺失值和异常值。
  • 标准化输入特征数据。

2. 特征提取

  • 使用 TCN 对输入数据进行时域卷积操作,提取时间序列特征。

3. 序列建模

  • 将卷积提取的特征输入到 BiGRU 网络中,处理时间序列的双向依赖。

4. 注意力机制应用

  • BiGRU 的输出上应用 Attention 机制,增强对关键特征的关注。

5. 参数优化

  • 使用 NGO 优化 TCNBiGRUAttention 机制的超参数。

6. 模型训练

  • 将处理后的数据输入到组合模型中进行训练,优化损失函数(如均方误差)。

7. 模型预测

  • 使用训练好的模型对新数据进行回归预测。

8. 模型评估

  • 评估模型的预测性能,使用指标如均方误差(MSE)等。

总结

NGO-TCN-BiGRU-Attention 模型通过 TCN 提取时域特征,BiGRU 处理双向时间依赖,Attention 机制关注重要特征,NGO 优化参数,实现高效的回归预测。模型的主要流程包括数据预处理、特征提取、序列建模、注意力机制应用、参数优化、训练、预测和评估。

二、实验结果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、核心代码


%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据格式转换
pc_train{1,1} = p_train;
pc_test{1,1} = p_test;

%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = 5;                                            % 优化参数个数

四、代码获取

私信即可

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

标签:NGO,模型,Attention,TCN,train,BiGRU
From: https://blog.csdn.net/2401_86241083/article/details/141440150

相关文章

  • 基于django+vue汽车维修服务系统【开题报告+程序+论文】计算机毕设
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着汽车保有量的持续增长和消费者对汽车服务质量要求的不断提高,汽车维修服务行业面临着前所未有的机遇与挑战。传统的手工记录与管理方式......
  • 基于django+vue汽车空调管理系统【开题报告+程序+论文】计算机毕设
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着汽车工业的快速发展和人们生活水平的提高,汽车已成为现代生活中不可或缺的重要交通工具。汽车空调作为提升驾乘舒适度的关键系统,其性能......
  • 基于django+vue企业物流管理系统【开题报告+程序+论文】计算机毕设
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景在全球化与电子商务飞速发展的今天,企业物流管理已成为连接生产与销售、提升供应链效率的关键环节。传统的人工或简单信息化管理方式已难以......
  • Django集成腾讯COS对象存储
    前言最近遇到一个场景需要把大量的资源文件存储到OSS里,这里选的是腾讯的COS对象存储(话说我接下来想搞的SnapMix项目也是需要大量存储的,我打算搭个MinIO把24T的服务器利用起来~)为啥腾讯不搞个兼容AmazonS3协议的啊……官方的SDK和文档都奇奇怪怪的,感觉国内的厂......
  • CNN-BiLSTM-Attention(12种算法优化CNN-BiLSTM-Attention多输入单输出)
     12种算法优化CNN-BiLSTM-Attention模型预测的代码。其中Attention模型可以改为单头或者多头,在代码中就是改个数字而已。代码注释已写好如何更改。12种算法优化CNN-BiLSTM-Attention多特征输入单步预测代码获取戳此处代码获取戳此处代码获取戳此处主要功能为:采用12种......
  • 基于django+vue农产品在线管理系统【开题报告+程序+论文】计算机毕设
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着农业现代化的推进和互联网技术的飞速发展,农产品销售与管理模式正经历着深刻的变革。传统农产品市场面临着信息不对称、流通效率低下、......
  • 基于django+vue农产品销售与管理系统【开题报告+程序+论文】计算机毕设
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着农业生产的不断发展和消费者需求的日益多样化,农产品销售与管理面临着新的挑战。传统农产品销售模式往往存在信息不对称、流通环节多、......
  • 计算机毕业设计django+vue网上水果商城系统【开题+论文+程序】
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着互联网技术的飞速发展,电子商务已成为人们日常生活中不可或缺的一部分,尤其在后疫情时代,线上购物更是成为了消费者获取商品与服务的主要......
  • 计算机毕业设计django+vue超市会员管理系统设计与实现【开题+论文+程序】
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着信息技术的飞速发展和电子商务的普及,超市管理逐渐向数字化、智能化转型。传统超市在会员管理、商品信息维护、订单处理及积分兑换等方......
  • 多模态学习之论文阅读:《Pre-gating and Contextual Attention Gate — A new fusion m
    《Pre-gatingandContextualAttentionGate—Anewfusionmethodformulti-modaldatatasks》 -2024.11 影响因子7.9  (一)要点提出一种新的多模态数据融合方法,即PCAG(Pre-gatingandContextualAttentionGate),以解决现有跨模态交互学习中的噪声问题和不确定性问......