首页 > 编程语言 >HashMap源码全解析

HashMap源码全解析

时间:2024-08-14 12:16:23浏览次数:16  
标签:解析 return HashMap tab int 源码 key hash null

1.源码全集如下

查看代码
 public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    @java.io.Serial
    private static final long serialVersionUID = 362498820763181265L;

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (Type t : ts) {
                    if ((t instanceof ParameterizedType) &&
                        ((p = (ParameterizedType) t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty {@code HashMap} with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new {@code HashMap} with the same mappings as the
     * specified {@code Map}.  The {@code HashMap} is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified {@code Map}.
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor.
     *
     * @param m the map
     * @param evict false when initially constructing this map, else
     * true (relayed to method afterNodeInsertion).
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            } else {
                // Because of linked-list bucket constraints, we cannot
                // expand all at once, but can reduce total resize
                // effort by repeated doubling now vs later
                while (s > threshold && table.length < MAXIMUM_CAPACITY)
                    resize();
            }

            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns {@code true} if this map contains no key-value mappings.
     *
     * @return {@code true} if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods.
     *
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & (hash = hash(key))]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /**
     * Returns {@code true} if this map contains a mapping for the
     * specified key.
     *
     * @param   key   The key whose presence in this map is to be tested
     * @return {@code true} if this map contains a mapping for the specified
     * key.
     */
    public boolean containsKey(Object key) {
        return getNode(key) != null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with {@code key}, or
     *         {@code null} if there was no mapping for {@code key}.
     *         (A {@code null} return can also indicate that the map
     *         previously associated {@code null} with {@code key}.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * @param  key key whose mapping is to be removed from the map
     * @return the previous value associated with {@code key}, or
     *         {@code null} if there was no mapping for {@code key}.
     *         (A {@code null} return can also indicate that the map
     *         previously associated {@code null} with {@code key}.)
     */
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    /**
     * Implements Map.remove and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    /**
     * Returns {@code true} if this map maps one or more keys to the
     * specified value.
     *
     * @param value value whose presence in this map is to be tested
     * @return {@code true} if this map maps one or more keys to the
     *         specified value
     */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own {@code remove} operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * {@code Iterator.remove}, {@code Set.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear}
     * operations.  It does not support the {@code add} or {@code addAll}
     * operations.
     *
     * @return a set view of the keys contained in this map
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    /**
     * Prepares the array for {@link Collection#toArray(Object[])} implementation.
     * If supplied array is smaller than this map size, a new array is allocated.
     * If supplied array is bigger than this map size, a null is written at size index.
     *
     * @param a an original array passed to {@code toArray()} method
     * @param <T> type of array elements
     * @return an array ready to be filled and returned from {@code toArray()} method.
     */
    @SuppressWarnings("unchecked")
    final <T> T[] prepareArray(T[] a) {
        int size = this.size;
        if (a.length < size) {
            return (T[]) java.lang.reflect.Array
                    .newInstance(a.getClass().getComponentType(), size);
        }
        if (a.length > size) {
            a[size] = null;
        }
        return a;
    }

    /**
     * Fills an array with this map keys and returns it. This method assumes
     * that input array is big enough to fit all the keys. Use
     * {@link #prepareArray(Object[])} to ensure this.
     *
     * @param a an array to fill
     * @param <T> type of array elements
     * @return supplied array
     */
    <T> T[] keysToArray(T[] a) {
        Object[] r = a;
        Node<K,V>[] tab;
        int idx = 0;
        if (size > 0 && (tab = table) != null) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    r[idx++] = e.key;
                }
            }
        }
        return a;
    }

    /**
     * Fills an array with this map values and returns it. This method assumes
     * that input array is big enough to fit all the values. Use
     * {@link #prepareArray(Object[])} to ensure this.
     *
     * @param a an array to fill
     * @param <T> type of array elements
     * @return supplied array
     */
    <T> T[] valuesToArray(T[] a) {
        Object[] r = a;
        Node<K,V>[] tab;
        int idx = 0;
        if (size > 0 && (tab = table) != null) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    r[idx++] = e.value;
                }
            }
        }
        return a;
    }

    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public Object[] toArray() {
            return keysToArray(new Object[size]);
        }

        public <T> T[] toArray(T[] a) {
            return keysToArray(prepareArray(a));
        }

        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator's own {@code remove} operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the {@code Iterator.remove},
     * {@code Collection.remove}, {@code removeAll},
     * {@code retainAll} and {@code clear} operations.  It does not
     * support the {@code add} or {@code addAll} operations.
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public Object[] toArray() {
            return valuesToArray(new Object[size]);
        }

        public <T> T[] toArray(T[] a) {
            return valuesToArray(prepareArray(a));
        }

        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own {@code remove} operation, or through the
     * {@code setValue} operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the {@code Iterator.remove},
     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
     * {@code clear} operations.  It does not support the
     * {@code add} or {@code addAll} operations.
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry<?, ?> e))
                return false;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry<?, ?> e) {
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K,V> e;
        return (e = getNode(key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        if ((e = getNode(key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a
     * {@link ConcurrentModificationException} if it is detected that the
     * mapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the
     * mapping function modified this map
     */
    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        int mc = modCount;
        V v = mappingFunction.apply(key);
        if (mc != modCount) { throw new ConcurrentModificationException(); }
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        else if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        modCount = mc + 1;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a
     * {@link ConcurrentModificationException} if it is detected that the
     * remapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the
     * remapping function modified this map
     */
    @Override
    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node<K,V> e; V oldValue;
        if ((e = getNode(key)) != null &&
            (oldValue = e.value) != null) {
            int mc = modCount;
            V v = remappingFunction.apply(key, oldValue);
            if (mc != modCount) { throw new ConcurrentModificationException(); }
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            }
            else {
                int hash = hash(key);
                removeNode(hash, key, null, false, true);
            }
        }
        return null;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a
     * {@link ConcurrentModificationException} if it is detected that the
     * remapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the
     * remapping function modified this map
     */
    @Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        int mc = modCount;
        V v = remappingFunction.apply(key, oldValue);
        if (mc != modCount) { throw new ConcurrentModificationException(); }
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
        }
        else if (v != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            modCount = mc + 1;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    /**
     * {@inheritDoc}
     *
     * <p>This method will, on a best-effort basis, throw a
     * {@link ConcurrentModificationException} if it is detected that the
     * remapping function modifies this map during computation.
     *
     * @throws ConcurrentModificationException if it is detected that the
     * remapping function modified this map
     */
    @Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null || remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null) {
                int mc = modCount;
                v = remappingFunction.apply(old.value, value);
                if (mc != modCount) {
                    throw new ConcurrentModificationException();
                }
            } else {
                v = value;
            }
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
            return v;
        } else {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
            return value;
        }
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K,V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization

    /**
     * Returns a shallow copy of this {@code HashMap} instance: the keys and
     * values themselves are not cloned.
     *
     * @return a shallow copy of this map
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K,V> result;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    // These methods are also used when serializing HashSets
    final float loadFactor() { return loadFactor; }
    final int capacity() {
        return (table != null) ? table.length :
            (threshold > 0) ? threshold :
            DEFAULT_INITIAL_CAPACITY;
    }

    /**
     * Saves this map to a stream (that is, serializes it).
     *
     * @param s the stream
     * @throws IOException if an I/O error occurs
     * @serialData The <i>capacity</i> of the HashMap (the length of the
     *             bucket array) is emitted (int), followed by the
     *             <i>size</i> (an int, the number of key-value
     *             mappings), followed by the key (Object) and value (Object)
     *             for each key-value mapping.  The key-value mappings are
     *             emitted in no particular order.
     */
    @java.io.Serial
    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    /**
     * Reconstitutes this map from a stream (that is, deserializes it).
     * @param s the stream
     * @throws ClassNotFoundException if the class of a serialized object
     *         could not be found
     * @throws IOException if an I/O error occurs
     */
    @java.io.Serial
    private void readObject(ObjectInputStream s)
        throws IOException, ClassNotFoundException {

        ObjectInputStream.GetField fields = s.readFields();

        // Read loadFactor (ignore threshold)
        float lf = fields.get("loadFactor", 0.75f);
        if (lf <= 0 || Float.isNaN(lf))
            throw new InvalidObjectException("Illegal load factor: " + lf);

        lf = Math.min(Math.max(0.25f, lf), 4.0f);
        HashMap.UnsafeHolder.putLoadFactor(this, lf);

        reinitialize();

        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0) {
            throw new InvalidObjectException("Illegal mappings count: " + mappings);
        } else if (mappings == 0) {
            // use defaults
        } else if (mappings > 0) {
            float fc = (float)mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                       DEFAULT_INITIAL_CAPACITY :
                       (fc >= MAXIMUM_CAPACITY) ?
                       MAXIMUM_CAPACITY :
                       tableSizeFor((int)fc));
            float ft = (float)cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                         (int)ft : Integer.MAX_VALUE);

            // Check Map.Entry[].class since it's the nearest public type to
            // what we're actually creating.
            SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap);
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                    K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                    V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    // Support for resetting final field during deserializing
    private static final class UnsafeHolder {
        private UnsafeHolder() { throw new InternalError(); }
        private static final jdk.internal.misc.Unsafe unsafe
                = jdk.internal.misc.Unsafe.getUnsafe();
        private static final long LF_OFFSET
                = unsafe.objectFieldOffset(HashMap.class, "loadFactor");
        static void putLoadFactor(HashMap<?, ?> map, float lf) {
            unsafe.putFloat(map, LF_OFFSET, lf);
        }
    }

    /* ------------------------------------------------------------ */
    // iterators

    abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            removeNode(p.hash, p.key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // spliterators

    static class HashMapSpliterator<K,V> {
        final HashMap<K,V> map;
        Node<K,V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap<K,V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K,V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K,V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node<K,V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support


    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     */

    // Create a regular (non-tree) node
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    /**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node<K,V> p) { }

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K,V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         */
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null
                || (movable
                    && (root.right == null
                        || (rl = root.left) == null
                        || rl.left == null))) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    (root = replacement).red = false;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                   TreeNode<K,V> x) {
            for (TreeNode<K,V> xp, xpl, xpr;;) {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

2.泊松分布(Poisson_distribution):单位时间内,独立事件发生的次数。

是有一定的公式去支撑该公式的,根据公式算出8数量链表概率足够低,在此数值中转化为红黑树虽然空间占用两倍,但是时间效率更高。(空间换时间)

* 0:    0.60653066
* 1:    0.30326533
* 2:    0.07581633
* 3:    0.01263606
* 4:    0.00157952
* 5:    0.00015795
* 6:    0.00001316
* 7:    0.00000094
* 8:    0.00000006

2.HashMap的hash如下:

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

首先int是4个字节,则有4*8位

假设二进制(hashCode)

0000 0000 1111 1111 0000 0000 1111 1111

右移16位则(hashCode>>>16)

0000 0000 0000 0000 0000 0000 1111 1111

异或(^)

0000 0000 1111 1111 0000 0000 0000 0000

目的:增加了结果的分布位置,减少冲突概率,扰动处理

3.写入步骤

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    
    '//如果未初始化,则初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        //扩容是2的次幂
        n = (tab = resize()).length;
    //如果数组槽位为空,则直接写入
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    
    //如果数组槽位有值
    else {
        //p是数组槽位,第一个元素(链表或红黑树)
        //如果第一个元素hash = 目前添加的元素hash 或者 key的值相同 需要覆盖当前key对于的value值
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //如果节点已经是红黑树,插入到红黑树
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            //走到这里就是链表数据结构
            for (int binCount = 0; ; ++binCount) {
                 //第一个槽位元素的下一个为NULL,则直接赋值
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    
                    //当元素数量>=8,需要树化链表数据结构
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                
                //如果key相同直接结束循环
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                
                //p走到下一个节点
                p = e;
            }
        }
        
        //元素存在,则直接覆盖,返回旧值
        if (e != null) { 
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    
    //新增元素的话,增加modCount
    ++modCount;
    
    //数量增加++ > 12 则扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

4.查询步骤

public class HashMap<K,V> extends AbstractMap<K,V>    implements Map<K,V>, Cloneable, Serializable {    @java.io.Serial    private static final long serialVersionUID = 362498820763181265L;    /*     * Implementation notes.     *     * This map usually acts as a binned (bucketed) hash table, but     * when bins get too large, they are transformed into bins of     * TreeNodes, each structured similarly to those in     * java.util.TreeMap. Most methods try to use normal bins, but     * relay to TreeNode methods when applicable (simply by checking     * instanceof a node).  Bins of TreeNodes may be traversed and     * used like any others, but additionally support faster lookup     * when overpopulated. However, since the vast majority of bins in     * normal use are not overpopulated, checking for existence of     * tree bins may be delayed in the course of table methods.     *     * Tree bins (i.e., bins whose elements are all TreeNodes) are     * ordered primarily by hashCode, but in the case of ties, if two     * elements are of the same "class C implements Comparable<C>",     * type then their compareTo method is used for ordering. (We     * conservatively check generic types via reflection to validate     * this -- see method comparableClassFor).  The added complexity     * of tree bins is worthwhile in providing worst-case O(log n)     * operations when keys either have distinct hashes or are     * orderable, Thus, performance degrades gracefully under     * accidental or malicious usages in which hashCode() methods     * return values that are poorly distributed, as well as those in     * which many keys share a hashCode, so long as they are also     * Comparable. (If neither of these apply, we may waste about a     * factor of two in time and space compared to taking no     * precautions. But the only known cases stem from poor user     * programming practices that are already so slow that this makes     * little difference.)     *     * Because TreeNodes are about twice the size of regular nodes, we     * use them only when bins contain enough nodes to warrant use     * (see TREEIFY_THRESHOLD). And when they become too small (due to     * removal or resizing) they are converted back to plain bins.  In     * usages with well-distributed user hashCodes, tree bins are     * rarely used.  Ideally, under random hashCodes, the frequency of     * nodes in bins follows a Poisson distribution     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a     * parameter of about 0.5 on average for the default resizing     * threshold of 0.75, although with a large variance because of     * resizing granularity. Ignoring variance, the expected     * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /     * factorial(k)). The first values are:     *     * 0:    0.60653066     * 1:    0.30326533     * 2:    0.07581633     * 3:    0.01263606     * 4:    0.00157952     * 5:    0.00015795     * 6:    0.00001316     * 7:    0.00000094     * 8:    0.00000006     * more: less than 1 in ten million     *     * The root of a tree bin is normally its first node.  However,     * sometimes (currently only upon Iterator.remove), the root might     * be elsewhere, but can be recovered following parent links     * (method TreeNode.root()).     *     * All applicable internal methods accept a hash code as an     * argument (as normally supplied from a public method), allowing     * them to call each other without recomputing user hashCodes.     * Most internal methods also accept a "tab" argument, that is     * normally the current table, but may be a new or old one when     * resizing or converting.     *     * When bin lists are treeified, split, or untreeified, we keep     * them in the same relative access/traversal order (i.e., field     * Node.next) to better preserve locality, and to slightly     * simplify handling of splits and traversals that invoke     * iterator.remove. When using comparators on insertion, to keep a     * total ordering (or as close as is required here) across     * rebalancings, we compare classes and identityHashCodes as     * tie-breakers.     *     * The use and transitions among plain vs tree modes is     * complicated by the existence of subclass LinkedHashMap. See     * below for hook methods defined to be invoked upon insertion,     * removal and access that allow LinkedHashMap internals to     * otherwise remain independent of these mechanics. (This also     * requires that a map instance be passed to some utility methods     * that may create new nodes.)     *     * The concurrent-programming-like SSA-based coding style helps     * avoid aliasing errors amid all of the twisty pointer operations.     */    /**     * The default initial capacity - MUST be a power of two.     */    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16    /**     * The maximum capacity, used if a higher value is implicitly specified     * by either of the constructors with arguments.     * MUST be a power of two <= 1<<30.     */    static final int MAXIMUM_CAPACITY = 1 << 30;    /**     * The load factor used when none specified in constructor.     */    static final float DEFAULT_LOAD_FACTOR = 0.75f;    /**     * The bin count threshold for using a tree rather than list for a     * bin.  Bins are converted to trees when adding an element to a     * bin with at least this many nodes. The value must be greater     * than 2 and should be at least 8 to mesh with assumptions in     * tree removal about conversion back to plain bins upon     * shrinkage.     */    static final int TREEIFY_THRESHOLD = 8;    /**     * The bin count threshold for untreeifying a (split) bin during a     * resize operation. Should be less than TREEIFY_THRESHOLD, and at     * most 6 to mesh with shrinkage detection under removal.     */    static final int UNTREEIFY_THRESHOLD = 6;    /**     * The smallest table capacity for which bins may be treeified.     * (Otherwise the table is resized if too many nodes in a bin.)     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts     * between resizing and treeification thresholds.     */    static final int MIN_TREEIFY_CAPACITY = 64;    /**     * Basic hash bin node, used for most entries.  (See below for     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)     */    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        V value;        Node<K,V> next;        Node(int hash, K key, V value, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.value = value;            this.next = next;        }        public final K getKey()        { return key; }        public final V getValue()      { return value; }        public final String toString() { return key + "=" + value; }        public final int hashCode() {            return Objects.hashCode(key) ^ Objects.hashCode(value);        }        public final V setValue(V newValue) {            V oldValue = value;            value = newValue;            return oldValue;        }        public final boolean equals(Object o) {            if (o == this)                return true;            return o instanceof Map.Entry<?, ?> e                    && Objects.equals(key, e.getKey())                    && Objects.equals(value, e.getValue());        }    }    /* ---------------- Static utilities -------------- */    /**     * Computes key.hashCode() and spreads (XORs) higher bits of hash     * to lower.  Because the table uses power-of-two masking, sets of     * hashes that vary only in bits above the current mask will     * always collide. (Among known examples are sets of Float keys     * holding consecutive whole numbers in small tables.)  So we     * apply a transform that spreads the impact of higher bits     * downward. There is a tradeoff between speed, utility, and     * quality of bit-spreading. Because many common sets of hashes     * are already reasonably distributed (so don't benefit from     * spreading), and because we use trees to handle large sets of     * collisions in bins, we just XOR some shifted bits in the     * cheapest possible way to reduce systematic lossage, as well as     * to incorporate impact of the highest bits that would otherwise     * never be used in index calculations because of table bounds.     */    static final int hash(Object key) {        int h;        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);    }    /**     * Returns x's Class if it is of the form "class C implements     * Comparable<C>", else null.     */    static Class<?> comparableClassFor(Object x) {        if (x instanceof Comparable) {            Class<?> c; Type[] ts, as; ParameterizedType p;            if ((c = x.getClass()) == String.class) // bypass checks                return c;            if ((ts = c.getGenericInterfaces()) != null) {                for (Type t : ts) {                    if ((t instanceof ParameterizedType) &&                        ((p = (ParameterizedType) t).getRawType() ==                         Comparable.class) &&                        (as = p.getActualTypeArguments()) != null &&                        as.length == 1 && as[0] == c) // type arg is c                        return c;                }            }        }        return null;    }    /**     * Returns k.compareTo(x) if x matches kc (k's screened comparable     * class), else 0.     */    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable    static int compareComparables(Class<?> kc, Object k, Object x) {        return (x == null || x.getClass() != kc ? 0 :                ((Comparable)k).compareTo(x));    }    /**     * Returns a power of two size for the given target capacity.     */    static final int tableSizeFor(int cap) {        int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;    }    /* ---------------- Fields -------------- */    /**     * The table, initialized on first use, and resized as     * necessary. When allocated, length is always a power of two.     * (We also tolerate length zero in some operations to allow     * bootstrapping mechanics that are currently not needed.)     */    transient Node<K,V>[] table;    /**     * Holds cached entrySet(). Note that AbstractMap fields are used     * for keySet() and values().     */    transient Set<Map.Entry<K,V>> entrySet;    /**     * The number of key-value mappings contained in this map.     */    transient int size;    /**     * The number of times this HashMap has been structurally modified     * Structural modifications are those that change the number of mappings in     * the HashMap or otherwise modify its internal structure (e.g.,     * rehash).  This field is used to make iterators on Collection-views of     * the HashMap fail-fast.  (See ConcurrentModificationException).     */    transient int modCount;    /**     * The next size value at which to resize (capacity * load factor).     *     * @serial     */    // (The javadoc description is true upon serialization.    // Additionally, if the table array has not been allocated, this    // field holds the initial array capacity, or zero signifying    // DEFAULT_INITIAL_CAPACITY.)    int threshold;    /**     * The load factor for the hash table.     *     * @serial     */    final float loadFactor;    /* ---------------- Public operations -------------- */    /**     * Constructs an empty {@code HashMap} with the specified initial     * capacity and load factor.     *     * @param  initialCapacity the initial capacity     * @param  loadFactor      the load factor     * @throws IllegalArgumentException if the initial capacity is negative     *         or the load factor is nonpositive     */    public HashMap(int initialCapacity, float loadFactor) {        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +                                               initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +                                               loadFactor);        this.loadFactor = loadFactor;        this.threshold = tableSizeFor(initialCapacity);    }    /**     * Constructs an empty {@code HashMap} with the specified initial     * capacity and the default load factor (0.75).     *     * @param  initialCapacity the initial capacity.     * @throws IllegalArgumentException if the initial capacity is negative.     */    public HashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);    }    /**     * Constructs an empty {@code HashMap} with the default initial capacity     * (16) and the default load factor (0.75).     */    public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted    }    /**     * Constructs a new {@code HashMap} with the same mappings as the     * specified {@code Map}.  The {@code HashMap} is created with     * default load factor (0.75) and an initial capacity sufficient to     * hold the mappings in the specified {@code Map}.     *     * @param   m the map whose mappings are to be placed in this map     * @throws  NullPointerException if the specified map is null     */    public HashMap(Map<? extends K, ? extends V> m) {        this.loadFactor = DEFAULT_LOAD_FACTOR;        putMapEntries(m, false);    }    /**     * Implements Map.putAll and Map constructor.     *     * @param m the map     * @param evict false when initially constructing this map, else     * true (relayed to method afterNodeInsertion).     */    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {        int s = m.size();        if (s > 0) {            if (table == null) { // pre-size                float ft = ((float)s / loadFactor) + 1.0F;                int t = ((ft < (float)MAXIMUM_CAPACITY) ?                         (int)ft : MAXIMUM_CAPACITY);                if (t > threshold)                    threshold = tableSizeFor(t);            } else {                // Because of linked-list bucket constraints, we cannot                // expand all at once, but can reduce total resize                // effort by repeated doubling now vs later                while (s > threshold && table.length < MAXIMUM_CAPACITY)                    resize();            }            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {                K key = e.getKey();                V value = e.getValue();                putVal(hash(key), key, value, false, evict);            }        }    }    /**     * Returns the number of key-value mappings in this map.     *     * @return the number of key-value mappings in this map     */    public int size() {        return size;    }    /**     * Returns {@code true} if this map contains no key-value mappings.     *     * @return {@code true} if this map contains no key-value mappings     */    public boolean isEmpty() {        return size == 0;    }    /**     * Returns the value to which the specified key is mapped,     * or {@code null} if this map contains no mapping for the key.     *     * <p>More formally, if this map contains a mapping from a key     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :     * key.equals(k))}, then this method returns {@code v}; otherwise     * it returns {@code null}.  (There can be at most one such mapping.)     *     * <p>A return value of {@code null} does not <i>necessarily</i>     * indicate that the map contains no mapping for the key; it's also     * possible that the map explicitly maps the key to {@code null}.     * The {@link #containsKey containsKey} operation may be used to     * distinguish these two cases.     *     * @see #put(Object, Object)     */    public V get(Object key) {        Node<K,V> e;        return (e = getNode(key)) == null ? null : e.value;    }    /**     * Implements Map.get and related methods.     *     * @param key the key     * @return the node, or null if none     */    final Node<K,V> getNode(Object key) {        Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k;        if ((tab = table) != null && (n = tab.length) > 0 &&            (first = tab[(n - 1) & (hash = hash(key))]) != null) {            if (first.hash == hash && // always check first node                ((k = first.key) == key || (key != null && key.equals(k))))                return first;            if ((e = first.next) != null) {                if (first instanceof TreeNode)                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        return e;                } while ((e = e.next) != null);            }        }        return null;    }    /**     * Returns {@code true} if this map contains a mapping for the     * specified key.     *     * @param   key   The key whose presence in this map is to be tested     * @return {@code true} if this map contains a mapping for the specified     * key.     */    public boolean containsKey(Object key) {        return getNode(key) != null;    }    /**     * Associates the specified value with the specified key in this map.     * If the map previously contained a mapping for the key, the old     * value is replaced.     *     * @param key key with which the specified value is to be associated     * @param value value to be associated with the specified key     * @return the previous value associated with {@code key}, or     *         {@code null} if there was no mapping for {@code key}.     *         (A {@code null} return can also indicate that the map     *         previously associated {@code null} with {@code key}.)     */    public V put(K key, V value) {        return putVal(hash(key), key, value, false, true);    }    /**     * Implements Map.put and related methods.     *     * @param hash hash for key     * @param key the key     * @param value the value to put     * @param onlyIfAbsent if true, don't change existing value     * @param evict if false, the table is in creation mode.     * @return previous value, or null if none     */    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        Node<K,V>[] tab; Node<K,V> p; int n, i;        if ((tab = table) == null || (n = tab.length) == 0)            n = (tab = resize()).length;        if ((p = tab[i = (n - 1) & hash]) == null)            tab[i] = newNode(hash, key, value, null);        else {            Node<K,V> e; K k;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            else if (p instanceof TreeNode)                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {                for (int binCount = 0; ; ++binCount) {                    if ((e = p.next) == null) {                        p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) { // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }    /**     * Initializes or doubles table size.  If null, allocates in     * accord with initial capacity target held in field threshold.     * Otherwise, because we are using power-of-two expansion, the     * elements from each bin must either stay at same index, or move     * with a power of two offset in the new table.     *     * @return the table     */    final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        if (oldCap > 0) {            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAULT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        else {               // zero initial threshold signifies using defaults            newCap = DEFAULT_INITIAL_CAPACITY;            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);        }        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        table = newTab;        if (oldTab != null) {            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    else { // preserve order                        Node<K,V> loHead = null, loTail = null;                        Node<K,V> hiHead = null, hiTail = null;                        Node<K,V> next;                        do {                            next = e.next;                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    loHead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            else {                                if (hiTail == null)                                    hiHead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                        } while ((e = next) != null);                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }                    }                }            }        }        return newTab;    }    /**     * Replaces all linked nodes in bin at index for given hash unless     * table is too small, in which case resizes instead.     */    final void treeifyBin(Node<K,V>[] tab, int hash) {        int n, index; Node<K,V> e;        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)            resize();        else if ((e = tab[index = (n - 1) & hash]) != null) {            TreeNode<K,V> hd = null, tl = null;            do {                TreeNode<K,V> p = replacementTreeNode(e, null);                if (tl == null)                    hd = p;                else {                    p.prev = tl;                    tl.next = p;                }                tl = p;            } while ((e = e.next) != null);            if ((tab[index] = hd) != null)                hd.treeify(tab);        }    }    /**     * Copies all of the mappings from the specified map to this map.     * These mappings will replace any mappings that this map had for     * any of the keys currently in the specified map.     *     * @param m mappings to be stored in this map     * @throws NullPointerException if the specified map is null     */    public void putAll(Map<? extends K, ? extends V> m) {        putMapEntries(m, true);    }    /**     * Removes the mapping for the specified key from this map if present.     *     * @param  key key whose mapping is to be removed from the map     * @return the previous value associated with {@code key}, or     *         {@code null} if there was no mapping for {@code key}.     *         (A {@code null} return can also indicate that the map     *         previously associated {@code null} with {@code key}.)     */    public V remove(Object key) {        Node<K,V> e;        return (e = removeNode(hash(key), key, null, false, true)) == null ?            null : e.value;    }    /**     * Implements Map.remove and related methods.     *     * @param hash hash for key     * @param key the key     * @param value the value to match if matchValue, else ignored     * @param matchValue if true only remove if value is equal     * @param movable if false do not move other nodes while removing     * @return the node, or null if none     */    final Node<K,V> removeNode(int hash, Object key, Object value,                               boolean matchValue, boolean movable) {        Node<K,V>[] tab; Node<K,V> p; int n, index;        if ((tab = table) != null && (n = tab.length) > 0 &&            (p = tab[index = (n - 1) & hash]) != null) {            Node<K,V> node = null, e; K k; V v;            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                node = p;            else if ((e = p.next) != null) {                if (p instanceof TreeNode)                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);                else {                    do {                        if (e.hash == hash &&                            ((k = e.key) == key ||                             (key != null && key.equals(k)))) {                            node = e;                            break;                        }                        p = e;                    } while ((e = e.next) != null);                }            }            if (node != null && (!matchValue || (v = node.value) == value ||                                 (value != null && value.equals(v)))) {                if (node instanceof TreeNode)                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);                else if (node == p)                    tab[index] = node.next;                else                    p.next = node.next;                ++modCount;                --size;                afterNodeRemoval(node);                return node;            }        }        return null;    }    /**     * Removes all of the mappings from this map.     * The map will be empty after this call returns.     */    public void clear() {        Node<K,V>[] tab;        modCount++;        if ((tab = table) != null && size > 0) {            size = 0;            for (int i = 0; i < tab.length; ++i)                tab[i] = null;        }    }    /**     * Returns {@code true} if this map maps one or more keys to the     * specified value.     *     * @param value value whose presence in this map is to be tested     * @return {@code true} if this map maps one or more keys to the     *         specified value     */    public boolean containsValue(Object value) {        Node<K,V>[] tab; V v;        if ((tab = table) != null && size > 0) {            for (Node<K,V> e : tab) {                for (; e != null; e = e.next) {                    if ((v = e.value) == value ||                        (value != null && value.equals(v)))                        return true;                }            }        }        return false;    }    /**     * Returns a {@link Set} view of the keys contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modified     * while an iteration over the set is in progress (except through     * the iterator's own {@code remove} operation), the results of     * the iteration are undefined.  The set supports element removal,     * which removes the corresponding mapping from the map, via the     * {@code Iterator.remove}, {@code Set.remove},     * {@code removeAll}, {@code retainAll}, and {@code clear}     * operations.  It does not support the {@code add} or {@code addAll}     * operations.     *     * @return a set view of the keys contained in this map     */    public Set<K> keySet() {        Set<K> ks = keySet;        if (ks == null) {            ks = new KeySet();            keySet = ks;        }        return ks;    }    /**     * Prepares the array for {@link Collection#toArray(Object[])} implementation.     * If supplied array is smaller than this map size, a new array is allocated.     * If supplied array is bigger than this map size, a null is written at size index.     *     * @param a an original array passed to {@code toArray()} method     * @param <T> type of array elements     * @return an array ready to be filled and returned from {@code toArray()} method.     */    @SuppressWarnings("unchecked")    final <T> T[] prepareArray(T[] a) {        int size = this.size;        if (a.length < size) {            return (T[]) java.lang.reflect.Array                    .newInstance(a.getClass().getComponentType(), size);        }        if (a.length > size) {            a[size] = null;        }        return a;    }    /**     * Fills an array with this map keys and returns it. This method assumes     * that input array is big enough to fit all the keys. Use     * {@link #prepareArray(Object[])} to ensure this.     *     * @param a an array to fill     * @param <T> type of array elements     * @return supplied array     */    <T> T[] keysToArray(T[] a) {        Object[] r = a;        Node<K,V>[] tab;        int idx = 0;        if (size > 0 && (tab = table) != null) {            for (Node<K,V> e : tab) {                for (; e != null; e = e.next) {                    r[idx++] = e.key;                }            }        }        return a;    }    /**     * Fills an array with this map values and returns it. This method assumes     * that input array is big enough to fit all the values. Use     * {@link #prepareArray(Object[])} to ensure this.     *     * @param a an array to fill     * @param <T> type of array elements     * @return supplied array     */    <T> T[] valuesToArray(T[] a) {        Object[] r = a;        Node<K,V>[] tab;        int idx = 0;        if (size > 0 && (tab = table) != null) {            for (Node<K,V> e : tab) {                for (; e != null; e = e.next) {                    r[idx++] = e.value;                }            }        }        return a;    }    final class KeySet extends AbstractSet<K> {        public final int size()                 { return size; }        public final void clear()               { HashMap.this.clear(); }        public final Iterator<K> iterator()     { return new KeyIterator(); }        public final boolean contains(Object o) { return containsKey(o); }        public final boolean remove(Object key) {            return removeNode(hash(key), key, null, false, true) != null;        }        public final Spliterator<K> spliterator() {            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);        }        public Object[] toArray() {            return keysToArray(new Object[size]);        }        public <T> T[] toArray(T[] a) {            return keysToArray(prepareArray(a));        }        public final void forEach(Consumer<? super K> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (Node<K,V> e : tab) {                    for (; e != null; e = e.next)                        action.accept(e.key);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }    }    /**     * Returns a {@link Collection} view of the values contained in this map.     * The collection is backed by the map, so changes to the map are     * reflected in the collection, and vice-versa.  If the map is     * modified while an iteration over the collection is in progress     * (except through the iterator's own {@code remove} operation),     * the results of the iteration are undefined.  The collection     * supports element removal, which removes the corresponding     * mapping from the map, via the {@code Iterator.remove},     * {@code Collection.remove}, {@code removeAll},     * {@code retainAll} and {@code clear} operations.  It does not     * support the {@code add} or {@code addAll} operations.     *     * @return a view of the values contained in this map     */    public Collection<V> values() {        Collection<V> vs = values;        if (vs == null) {            vs = new Values();            values = vs;        }        return vs;    }    final class Values extends AbstractCollection<V> {        public final int size()                 { return size; }        public final void clear()               { HashMap.this.clear(); }        public final Iterator<V> iterator()     { return new ValueIterator(); }        public final boolean contains(Object o) { return containsValue(o); }        public final Spliterator<V> spliterator() {            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);        }        public Object[] toArray() {            return valuesToArray(new Object[size]);        }        public <T> T[] toArray(T[] a) {            return valuesToArray(prepareArray(a));        }        public final void forEach(Consumer<? super V> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (Node<K,V> e : tab) {                    for (; e != null; e = e.next)                        action.accept(e.value);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }    }    /**     * Returns a {@link Set} view of the mappings contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modified     * while an iteration over the set is in progress (except through     * the iterator's own {@code remove} operation, or through the     * {@code setValue} operation on a map entry returned by the     * iterator) the results of the iteration are undefined.  The set     * supports element removal, which removes the corresponding     * mapping from the map, via the {@code Iterator.remove},     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and     * {@code clear} operations.  It does not support the     * {@code add} or {@code addAll} operations.     *     * @return a set view of the mappings contained in this map     */    public Set<Map.Entry<K,V>> entrySet() {        Set<Map.Entry<K,V>> es;        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;    }    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {        public final int size()                 { return size; }        public final void clear()               { HashMap.this.clear(); }        public final Iterator<Map.Entry<K,V>> iterator() {            return new EntryIterator();        }        public final boolean contains(Object o) {            if (!(o instanceof Map.Entry<?, ?> e))                return false;            Object key = e.getKey();            Node<K,V> candidate = getNode(key);            return candidate != null && candidate.equals(e);        }        public final boolean remove(Object o) {            if (o instanceof Map.Entry<?, ?> e) {                Object key = e.getKey();                Object value = e.getValue();                return removeNode(hash(key), key, value, true, true) != null;            }            return false;        }        public final Spliterator<Map.Entry<K,V>> spliterator() {            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);        }        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {            Node<K,V>[] tab;            if (action == null)                throw new NullPointerException();            if (size > 0 && (tab = table) != null) {                int mc = modCount;                for (Node<K,V> e : tab) {                    for (; e != null; e = e.next)                        action.accept(e);                }                if (modCount != mc)                    throw new ConcurrentModificationException();            }        }    }    // Overrides of JDK8 Map extension methods    @Override    public V getOrDefault(Object key, V defaultValue) {        Node<K,V> e;        return (e = getNode(key)) == null ? defaultValue : e.value;    }    @Override    public V putIfAbsent(K key, V value) {        return putVal(hash(key), key, value, true, true);    }    @Override    public boolean remove(Object key, Object value) {        return removeNode(hash(key), key, value, true, true) != null;    }    @Override    public boolean replace(K key, V oldValue, V newValue) {        Node<K,V> e; V v;        if ((e = getNode(key)) != null &&            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {            e.value = newValue;            afterNodeAccess(e);            return true;        }        return false;    }    @Override    public V replace(K key, V value) {        Node<K,V> e;        if ((e = getNode(key)) != null) {            V oldValue = e.value;            e.value = value;            afterNodeAccess(e);            return oldValue;        }        return null;    }    /**     * {@inheritDoc}     *     * <p>This method will, on a best-effort basis, throw a     * {@link ConcurrentModificationException} if it is detected that the     * mapping function modifies this map during computation.     *     * @throws ConcurrentModificationException if it is detected that the     * mapping function modified this map     */    @Override    public V computeIfAbsent(K key,                             Function<? super K, ? extends V> mappingFunction) {        if (mappingFunction == null)            throw new NullPointerException();        int hash = hash(key);        Node<K,V>[] tab; Node<K,V> first; int n, i;        int binCount = 0;        TreeNode<K,V> t = null;        Node<K,V> old = null;        if (size > threshold || (tab = table) == null ||            (n = tab.length) == 0)            n = (tab = resize()).length;        if ((first = tab[i = (n - 1) & hash]) != null) {            if (first instanceof TreeNode)                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);            else {                Node<K,V> e = first; K k;                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k)))) {                        old = e;                        break;                    }                    ++binCount;                } while ((e = e.next) != null);            }            V oldValue;            if (old != null && (oldValue = old.value) != null) {                afterNodeAccess(old);                return oldValue;            }        }        int mc = modCount;        V v = mappingFunction.apply(key);        if (mc != modCount) { throw new ConcurrentModificationException(); }        if (v == null) {            return null;        } else if (old != null) {            old.value = v;            afterNodeAccess(old);            return v;        }        else if (t != null)            t.putTreeVal(this, tab, hash, key, v);        else {            tab[i] = newNode(hash, key, v, first);            if (binCount >= TREEIFY_THRESHOLD - 1)                treeifyBin(tab, hash);        }        modCount = mc + 1;        ++size;        afterNodeInsertion(true);        return v;    }    /**     * {@inheritDoc}     *     * <p>This method will, on a best-effort basis, throw a     * {@link ConcurrentModificationException} if it is detected that the     * remapping function modifies this map during computation.     *     * @throws ConcurrentModificationException if it is detected that the     * remapping function modified this map     */    @Override    public V computeIfPresent(K key,                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {        if (remappingFunction == null)            throw new NullPointerException();        Node<K,V> e; V oldValue;        if ((e = getNode(key)) != null &&            (oldValue = e.value) != null) {            int mc = modCount;            V v = remappingFunction.apply(key, oldValue);            if (mc != modCount) { throw new ConcurrentModificationException(); }            if (v != null) {                e.value = v;                afterNodeAccess(e);                return v;            }            else {                int hash = hash(key);                removeNode(hash, key, null, false, true);            }        }        return null;    }    /**     * {@inheritDoc}     *     * <p>This method will, on a best-effort basis, throw a     * {@link ConcurrentModificationException} if it is detected that the     * remapping function modifies this map during computation.     *     * @throws ConcurrentModificationException if it is detected that the     * remapping function modified this map     */    @Override    public V compute(K key,                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {        if (remappingFunction == null)            throw new NullPointerException();        int hash = hash(key);        Node<K,V>[] tab; Node<K,V> first; int n, i;        int binCount = 0;        TreeNode<K,V> t = null;        Node<K,V> old = null;        if (size > threshold || (tab = table) == null ||            (n = tab.length) == 0)            n = (tab = resize()).length;        if ((first = tab[i = (n - 1) & hash]) != null) {            if (first instanceof TreeNode)                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);            else {                Node<K,V> e = first; K k;                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k)))) {                        old = e;                        break;                    }                    ++binCount;                } while ((e = e.next) != null);            }        }        V oldValue = (old == null) ? null : old.value;        int mc = modCount;        V v = remappingFunction.apply(key, oldValue);        if (mc != modCount) { throw new ConcurrentModificationException(); }        if (old != null) {            if (v != null) {                old.value = v;                afterNodeAccess(old);            }            else                removeNode(hash, key, null, false, true);        }        else if (v != null) {            if (t != null)                t.putTreeVal(this, tab, hash, key, v);            else {                tab[i] = newNode(hash, key, v, first);                if (binCount >= TREEIFY_THRESHOLD - 1)                    treeifyBin(tab, hash);            }            modCount = mc + 1;            ++size;            afterNodeInsertion(true);        }        return v;    }    /**     * {@inheritDoc}     *     * <p>This method will, on a best-effort basis, throw a     * {@link ConcurrentModificationException} if it is detected that the     * remapping function modifies this map during computation.     *     * @throws ConcurrentModificationException if it is detected that the     * remapping function modified this map     */    @Override    public V merge(K key, V value,                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {        if (value == null || remappingFunction == null)            throw new NullPointerException();        int hash = hash(key);        Node<K,V>[] tab; Node<K,V> first; int n, i;        int binCount = 0;        TreeNode<K,V> t = null;        Node<K,V> old = null;        if (size > threshold || (tab = table) == null ||            (n = tab.length) == 0)            n = (tab = resize()).length;        if ((first = tab[i = (n - 1) & hash]) != null) {            if (first instanceof TreeNode)                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);            else {                Node<K,V> e = first; K k;                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k)))) {                        old = e;                        break;                    }                    ++binCount;                } while ((e = e.next) != null);            }        }        if (old != null) {            V v;            if (old.value != null) {                int mc = modCount;                v = remappingFunction.apply(old.value, value);                if (mc != modCount) {                    throw new ConcurrentModificationException();                }            } else {                v = value;            }            if (v != null) {                old.value = v;                afterNodeAccess(old);            }            else                removeNode(hash, key, null, false, true);            return v;        } else {            if (t != null)                t.putTreeVal(this, tab, hash, key, value);            else {                tab[i] = newNode(hash, key, value, first);                if (binCount >= TREEIFY_THRESHOLD - 1)                    treeifyBin(tab, hash);            }            ++modCount;            ++size;            afterNodeInsertion(true);            return value;        }    }    @Override    public void forEach(BiConsumer<? super K, ? super V> action) {        Node<K,V>[] tab;        if (action == null)            throw new NullPointerException();        if (size > 0 && (tab = table) != null) {            int mc = modCount;            for (Node<K,V> e : tab) {                for (; e != null; e = e.next)                    action.accept(e.key, e.value);            }            if (modCount != mc)                throw new ConcurrentModificationException();        }    }    @Override    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {        Node<K,V>[] tab;        if (function == null)            throw new NullPointerException();        if (size > 0 && (tab = table) != null) {            int mc = modCount;            for (Node<K,V> e : tab) {                for (; e != null; e = e.next) {                    e.value = function.apply(e.key, e.value);                }            }            if (modCount != mc)                throw new ConcurrentModificationException();        }    }    /* ------------------------------------------------------------ */    // Cloning and serialization    /**     * Returns a shallow copy of this {@code HashMap} instance: the keys and     * values themselves are not cloned.     *     * @return a shallow copy of this map     */    @SuppressWarnings("unchecked")    @Override    public Object clone() {        HashMap<K,V> result;        try {            result = (HashMap<K,V>)super.clone();        } catch (CloneNotSupportedException e) {            // this shouldn't happen, since we are Cloneable            throw new InternalError(e);        }        result.reinitialize();        result.putMapEntries(this, false);        return result;    }    // These methods are also used when serializing HashSets    final float loadFactor() { return loadFactor; }    final int capacity() {        return (table != null) ? table.length :            (threshold > 0) ? threshold :            DEFAULT_INITIAL_CAPACITY;    }    /**     * Saves this map to a stream (that is, serializes it).     *     * @param s the stream     * @throws IOException if an I/O error occurs     * @serialData The <i>capacity</i> of the HashMap (the length of the     *             bucket array) is emitted (int), followed by the     *             <i>size</i> (an int, the number of key-value     *             mappings), followed by the key (Object) and value (Object)     *             for each key-value mapping.  The key-value mappings are     *             emitted in no particular order.     */    @java.io.Serial    private void writeObject(java.io.ObjectOutputStream s)        throws IOException {        int buckets = capacity();        // Write out the threshold, loadfactor, and any hidden stuff        s.defaultWriteObject();        s.writeInt(buckets);        s.writeInt(size);        internalWriteEntries(s);    }    /**     * Reconstitutes this map from a stream (that is, deserializes it).     * @param s the stream     * @throws ClassNotFoundException if the class of a serialized object     *         could not be found     * @throws IOException if an I/O error occurs     */    @java.io.Serial    private void readObject(ObjectInputStream s)        throws IOException, ClassNotFoundException {        ObjectInputStream.GetField fields = s.readFields();        // Read loadFactor (ignore threshold)        float lf = fields.get("loadFactor", 0.75f);        if (lf <= 0 || Float.isNaN(lf))            throw new InvalidObjectException("Illegal load factor: " + lf);        lf = Math.min(Math.max(0.25f, lf), 4.0f);        HashMap.UnsafeHolder.putLoadFactor(this, lf);        reinitialize();        s.readInt();                // Read and ignore number of buckets        int mappings = s.readInt(); // Read number of mappings (size)        if (mappings < 0) {            throw new InvalidObjectException("Illegal mappings count: " + mappings);        } else if (mappings == 0) {            // use defaults        } else if (mappings > 0) {            float fc = (float)mappings / lf + 1.0f;            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?                       DEFAULT_INITIAL_CAPACITY :                       (fc >= MAXIMUM_CAPACITY) ?                       MAXIMUM_CAPACITY :                       tableSizeFor((int)fc));            float ft = (float)cap * lf;            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?                         (int)ft : Integer.MAX_VALUE);            // Check Map.Entry[].class since it's the nearest public type to            // what we're actually creating.            SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, cap);            @SuppressWarnings({"rawtypes","unchecked"})            Node<K,V>[] tab = (Node<K,V>[])new Node[cap];            table = tab;            // Read the keys and values, and put the mappings in the HashMap            for (int i = 0; i < mappings; i++) {                @SuppressWarnings("unchecked")                    K key = (K) s.readObject();                @SuppressWarnings("unchecked")                    V value = (V) s.readObject();                putVal(hash(key), key, value, false, false);            }        }    }    // Support for resetting final field during deserializing    private static final class UnsafeHolder {        private UnsafeHolder() { throw new InternalError(); }        private static final jdk.internal.misc.Unsafe unsafe                = jdk.internal.misc.Unsafe.getUnsafe();        private static final long LF_OFFSET                = unsafe.objectFieldOffset(HashMap.class, "loadFactor");        static void putLoadFactor(HashMap<?, ?> map, float lf) {            unsafe.putFloat(map, LF_OFFSET, lf);        }    }    /* ------------------------------------------------------------ */    // iterators    abstract class HashIterator {        Node<K,V> next;        // next entry to return        Node<K,V> current;     // current entry        int expectedModCount;  // for fast-fail        int index;             // current slot        HashIterator() {            expectedModCount = modCount;            Node<K,V>[] t = table;            current = next = null;            index = 0;            if (t != null && size > 0) { // advance to first entry                do {} while (index < t.length && (next = t[index++]) == null);            }        }        public final boolean hasNext() {            return next != null;        }        final Node<K,V> nextNode() {            Node<K,V>[] t;            Node<K,V> e = next;            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            if (e == null)                throw new NoSuchElementException();            if ((next = (current = e).next) == null && (t = table) != null) {                do {} while (index < t.length && (next = t[index++]) == null);            }            return e;        }        public final void remove() {            Node<K,V> p = current;            if (p == null)                throw new IllegalStateException();            if (modCount != expectedModCount)                throw new ConcurrentModificationException();            current = null;            removeNode(p.hash, p.key, null, false, false);            expectedModCount = modCount;        }    }    final class KeyIterator extends HashIterator        implements Iterator<K> {        public final K next() { return nextNode().key; }    }    final class ValueIterator extends HashIterator        implements Iterator<V> {        public final V next() { return nextNode().value; }    }    final class EntryIterator extends HashIterator        implements Iterator<Map.Entry<K,V>> {        public final Map.Entry<K,V> next() { return nextNode(); }    }    /* ------------------------------------------------------------ */    // spliterators    static class HashMapSpliterator<K,V> {        final HashMap<K,V> map;        Node<K,V> current;          // current node        int index;                  // current index, modified on advance/split        int fence;                  // one past last index        int est;                    // size estimate        int expectedModCount;       // for comodification checks        HashMapSpliterator(HashMap<K,V> m, int origin,                           int fence, int est,                           int expectedModCount) {            this.map = m;            this.index = origin;            this.fence = fence;            this.est = est;            this.expectedModCount = expectedModCount;        }        final int getFence() { // initialize fence and size on first use            int hi;            if ((hi = fence) < 0) {                HashMap<K,V> m = map;                est = m.size;                expectedModCount = m.modCount;                Node<K,V>[] tab = m.table;                hi = fence = (tab == null) ? 0 : tab.length;            }            return hi;        }        public final long estimateSize() {            getFence(); // force init            return (long) est;        }    }    static final class KeySpliterator<K,V>        extends HashMapSpliterator<K,V>        implements Spliterator<K> {        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,                       int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public KeySpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid || current != null) ? null :                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,                                        expectedModCount);        }        public void forEachRemaining(Consumer<? super K> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            HashMap<K,V> m = map;            Node<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = (tab == null) ? 0 : tab.length;            }            else                mc = expectedModCount;            if (tab != null && tab.length >= hi &&                (i = index) >= 0 && (i < (index = hi) || current != null)) {                Node<K,V> p = current;                current = null;                do {                    if (p == null)                        p = tab[i++];                    else {                        action.accept(p.key);                        p = p.next;                    }                } while (p != null || i < hi);                if (m.modCount != mc)                    throw new ConcurrentModificationException();            }        }        public boolean tryAdvance(Consumer<? super K> action) {            int hi;            if (action == null)                throw new NullPointerException();            Node<K,V>[] tab = map.table;            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        K k = current.key;                        current = current.next;                        action.accept(k);                        if (map.modCount != expectedModCount)                            throw new ConcurrentModificationException();                        return true;                    }                }            }            return false;        }        public int characteristics() {            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |                Spliterator.DISTINCT;        }    }    static final class ValueSpliterator<K,V>        extends HashMapSpliterator<K,V>        implements Spliterator<V> {        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,                         int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public ValueSpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid || current != null) ? null :                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,                                          expectedModCount);        }        public void forEachRemaining(Consumer<? super V> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            HashMap<K,V> m = map;            Node<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = (tab == null) ? 0 : tab.length;            }            else                mc = expectedModCount;            if (tab != null && tab.length >= hi &&                (i = index) >= 0 && (i < (index = hi) || current != null)) {                Node<K,V> p = current;                current = null;                do {                    if (p == null)                        p = tab[i++];                    else {                        action.accept(p.value);                        p = p.next;                    }                } while (p != null || i < hi);                if (m.modCount != mc)                    throw new ConcurrentModificationException();            }        }        public boolean tryAdvance(Consumer<? super V> action) {            int hi;            if (action == null)                throw new NullPointerException();            Node<K,V>[] tab = map.table;            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        V v = current.value;                        current = current.next;                        action.accept(v);                        if (map.modCount != expectedModCount)                            throw new ConcurrentModificationException();                        return true;                    }                }            }            return false;        }        public int characteristics() {            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);        }    }    static final class EntrySpliterator<K,V>        extends HashMapSpliterator<K,V>        implements Spliterator<Map.Entry<K,V>> {        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,                         int expectedModCount) {            super(m, origin, fence, est, expectedModCount);        }        public EntrySpliterator<K,V> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid || current != null) ? null :                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,                                          expectedModCount);        }        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {            int i, hi, mc;            if (action == null)                throw new NullPointerException();            HashMap<K,V> m = map;            Node<K,V>[] tab = m.table;            if ((hi = fence) < 0) {                mc = expectedModCount = m.modCount;                hi = fence = (tab == null) ? 0 : tab.length;            }            else                mc = expectedModCount;            if (tab != null && tab.length >= hi &&                (i = index) >= 0 && (i < (index = hi) || current != null)) {                Node<K,V> p = current;                current = null;                do {                    if (p == null)                        p = tab[i++];                    else {                        action.accept(p);                        p = p.next;                    }                } while (p != null || i < hi);                if (m.modCount != mc)                    throw new ConcurrentModificationException();            }        }        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {            int hi;            if (action == null)                throw new NullPointerException();            Node<K,V>[] tab = map.table;            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {                while (current != null || index < hi) {                    if (current == null)                        current = tab[index++];                    else {                        Node<K,V> e = current;                        current = current.next;                        action.accept(e);                        if (map.modCount != expectedModCount)                            throw new ConcurrentModificationException();                        return true;                    }                }            }            return false;        }        public int characteristics() {            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |                Spliterator.DISTINCT;        }    }    /* ------------------------------------------------------------ */    // LinkedHashMap support    /*     * The following package-protected methods are designed to be     * overridden by LinkedHashMap, but not by any other subclass.     * Nearly all other internal methods are also package-protected     * but are declared final, so can be used by LinkedHashMap, view     * classes, and HashSet.     */    // Create a regular (non-tree) node    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {        return new Node<>(hash, key, value, next);    }    // For conversion from TreeNodes to plain nodes    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {        return new Node<>(p.hash, p.key, p.value, next);    }    // Create a tree bin node    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {        return new TreeNode<>(hash, key, value, next);    }    // For treeifyBin    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {        return new TreeNode<>(p.hash, p.key, p.value, next);    }    /**     * Reset to initial default state.  Called by clone and readObject.     */    void reinitialize() {        table = null;        entrySet = null;        keySet = null;        values = null;        modCount = 0;        threshold = 0;        size = 0;    }    // Callbacks to allow LinkedHashMap post-actions    void afterNodeAccess(Node<K,V> p) { }    void afterNodeInsertion(boolean evict) { }    void afterNodeRemoval(Node<K,V> p) { }    // Called only from writeObject, to ensure compatible ordering.    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {        Node<K,V>[] tab;        if (size > 0 && (tab = table) != null) {            for (Node<K,V> e : tab) {                for (; e != null; e = e.next) {                    s.writeObject(e.key);                    s.writeObject(e.value);                }            }        }    }    /* ------------------------------------------------------------ */    // Tree bins    /**     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn     * extends Node) so can be used as extension of either regular or     * linked node.     */    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {        TreeNode<K,V> parent;  // red-black tree links        TreeNode<K,V> left;        TreeNode<K,V> right;        TreeNode<K,V> prev;    // needed to unlink next upon deletion        boolean red;        TreeNode(int hash, K key, V val, Node<K,V> next) {            super(hash, key, val, next);        }        /**         * Returns root of tree containing this node.         */        final TreeNode<K,V> root() {            for (TreeNode<K,V> r = this, p;;) {                if ((p = r.parent) == null)                    return r;                r = p;            }        }        /**         * Ensures that the given root is the first node of its bin.         */        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {            int n;            if (root != null && tab != null && (n = tab.length) > 0) {                int index = (n - 1) & root.hash;                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];                if (root != first) {                    Node<K,V> rn;                    tab[index] = root;                    TreeNode<K,V> rp = root.prev;                    if ((rn = root.next) != null)                        ((TreeNode<K,V>)rn).prev = rp;                    if (rp != null)                        rp.next = rn;                    if (first != null)                        first.prev = root;                    root.next = first;                    root.prev = null;                }                assert checkInvariants(root);            }        }        /**         * Finds the node starting at root p with the given hash and key.         * The kc argument caches comparableClassFor(key) upon first use         * comparing keys.         */        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {            TreeNode<K,V> p = this;            do {                int ph, dir; K pk;                TreeNode<K,V> pl = p.left, pr = p.right, q;                if ((ph = p.hash) > h)                    p = pl;                else if (ph < h)                    p = pr;                else if ((pk = p.key) == k || (k != null && k.equals(pk)))                    return p;                else if (pl == null)                    p = pr;                else if (pr == null)                    p = pl;                else if ((kc != null ||                          (kc = comparableClassFor(k)) != null) &&                         (dir = compareComparables(kc, k, pk)) != 0)                    p = (dir < 0) ? pl : pr;                else if ((q = pr.find(h, k, kc)) != null)                    return q;                else                    p = pl;            } while (p != null);            return null;        }        /**         * Calls find for root node.         */        final TreeNode<K,V> getTreeNode(int h, Object k) {            return ((parent != null) ? root() : this).find(h, k, null);        }        /**         * Tie-breaking utility for ordering insertions when equal         * hashCodes and non-comparable. We don't require a total         * order, just a consistent insertion rule to maintain         * equivalence across rebalancings. Tie-breaking further than         * necessary simplifies testing a bit.         */        static int tieBreakOrder(Object a, Object b) {            int d;            if (a == null || b == null ||                (d = a.getClass().getName().                 compareTo(b.getClass().getName())) == 0)                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?                     -1 : 1);            return d;        }        /**         * Forms tree of the nodes linked from this node.         */        final void treeify(Node<K,V>[] tab) {            TreeNode<K,V> root = null;            for (TreeNode<K,V> x = this, next; x != null; x = next) {                next = (TreeNode<K,V>)x.next;                x.left = x.right = null;                if (root == null) {                    x.parent = null;                    x.red = false;                    root = x;                }                else {                    K k = x.key;                    int h = x.hash;                    Class<?> kc = null;                    for (TreeNode<K,V> p = root;;) {                        int dir, ph;                        K pk = p.key;                        if ((ph = p.hash) > h)                            dir = -1;                        else if (ph < h)                            dir = 1;                        else if ((kc == null &&                                  (kc = comparableClassFor(k)) == null) ||                                 (dir = compareComparables(kc, k, pk)) == 0)                            dir = tieBreakOrder(k, pk);                        TreeNode<K,V> xp = p;                        if ((p = (dir <= 0) ? p.left : p.right) == null) {                            x.parent = xp;                            if (dir <= 0)                                xp.left = x;                            else                                xp.right = x;                            root = balanceInsertion(root, x);                            break;                        }                    }                }            }            moveRootToFront(tab, root);        }        /**         * Returns a list of non-TreeNodes replacing those linked from         * this node.         */        final Node<K,V> untreeify(HashMap<K,V> map) {            Node<K,V> hd = null, tl = null;            for (Node<K,V> q = this; q != null; q = q.next) {                Node<K,V> p = map.replacementNode(q, null);                if (tl == null)                    hd = p;                else                    tl.next = p;                tl = p;            }            return hd;        }        /**         * Tree version of putVal.         */        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,                                       int h, K k, V v) {            Class<?> kc = null;            boolean searched = false;            TreeNode<K,V> root = (parent != null) ? root() : this;            for (TreeNode<K,V> p = root;;) {                int dir, ph; K pk;                if ((ph = p.hash) > h)                    dir = -1;                else if (ph < h)                    dir = 1;                else if ((pk = p.key) == k || (k != null && k.equals(pk)))                    return p;                else if ((kc == null &&                          (kc = comparableClassFor(k)) == null) ||                         (dir = compareComparables(kc, k, pk)) == 0) {                    if (!searched) {                        TreeNode<K,V> q, ch;                        searched = true;                        if (((ch = p.left) != null &&                             (q = ch.find(h, k, kc)) != null) ||                            ((ch = p.right) != null &&                             (q = ch.find(h, k, kc)) != null))                            return q;                    }                    dir = tieBreakOrder(k, pk);                }                TreeNode<K,V> xp = p;                if ((p = (dir <= 0) ? p.left : p.right) == null) {                    Node<K,V> xpn = xp.next;                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);                    if (dir <= 0)                        xp.left = x;                    else                        xp.right = x;                    xp.next = x;                    x.parent = x.prev = xp;                    if (xpn != null)                        ((TreeNode<K,V>)xpn).prev = x;                    moveRootToFront(tab, balanceInsertion(root, x));                    return null;                }            }        }        /**         * Removes the given node, that must be present before this call.         * This is messier than typical red-black deletion code because we         * cannot swap the contents of an interior node with a leaf         * successor that is pinned by "next" pointers that are accessible         * independently during traversal. So instead we swap the tree         * linkages. If the current tree appears to have too few nodes,         * the bin is converted back to a plain bin. (The test triggers         * somewhere between 2 and 6 nodes, depending on tree structure).         */        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,                                  boolean movable) {            int n;            if (tab == null || (n = tab.length) == 0)                return;            int index = (n - 1) & hash;            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;            if (pred == null)                tab[index] = first = succ;            else                pred.next = succ;            if (succ != null)                succ.prev = pred;            if (first == null)                return;            if (root.parent != null)                root = root.root();            if (root == null                || (movable                    && (root.right == null                        || (rl = root.left) == null                        || rl.left == null))) {                tab[index] = first.untreeify(map);  // too small                return;            }            TreeNode<K,V> p = this, pl = left, pr = right, replacement;            if (pl != null && pr != null) {                TreeNode<K,V> s = pr, sl;                while ((sl = s.left) != null) // find successor                    s = sl;                boolean c = s.red; s.red = p.red; p.red = c; // swap colors                TreeNode<K,V> sr = s.right;                TreeNode<K,V> pp = p.parent;                if (s == pr) { // p was s's direct parent                    p.parent = s;                    s.right = p;                }                else {                    TreeNode<K,V> sp = s.parent;                    if ((p.parent = sp) != null) {                        if (s == sp.left)                            sp.left = p;                        else                            sp.right = p;                    }                    if ((s.right = pr) != null)                        pr.parent = s;                }                p.left = null;                if ((p.right = sr) != null)                    sr.parent = p;                if ((s.left = pl) != null)                    pl.parent = s;                if ((s.parent = pp) == null)                    root = s;                else if (p == pp.left)                    pp.left = s;                else                    pp.right = s;                if (sr != null)                    replacement = sr;                else                    replacement = p;            }            else if (pl != null)                replacement = pl;            else if (pr != null)                replacement = pr;            else                replacement = p;            if (replacement != p) {                TreeNode<K,V> pp = replacement.parent = p.parent;                if (pp == null)                    (root = replacement).red = false;                else if (p == pp.left)                    pp.left = replacement;                else                    pp.right = replacement;                p.left = p.right = p.parent = null;            }            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);            if (replacement == p) {  // detach                TreeNode<K,V> pp = p.parent;                p.parent = null;                if (pp != null) {                    if (p == pp.left)                        pp.left = null;                    else if (p == pp.right)                        pp.right = null;                }            }            if (movable)                moveRootToFront(tab, r);        }        /**         * Splits nodes in a tree bin into lower and upper tree bins,         * or untreeifies if now too small. Called only from resize;         * see above discussion about split bits and indices.         *         * @param map the map         * @param tab the table for recording bin heads         * @param index the index of the table being split         * @param bit the bit of hash to split on         */        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {            TreeNode<K,V> b = this;            // Relink into lo and hi lists, preserving order            TreeNode<K,V> loHead = null, loTail = null;            TreeNode<K,V> hiHead = null, hiTail = null;            int lc = 0, hc = 0;            for (TreeNode<K,V> e = b, next; e != null; e = next) {                next = (TreeNode<K,V>)e.next;                e.next = null;                if ((e.hash & bit) == 0) {                    if ((e.prev = loTail) == null)                        loHead = e;                    else                        loTail.next = e;                    loTail = e;                    ++lc;                }                else {                    if ((e.prev = hiTail) == null)                        hiHead = e;                    else                        hiTail.next = e;                    hiTail = e;                    ++hc;                }            }            if (loHead != null) {                if (lc <= UNTREEIFY_THRESHOLD)                    tab[index] = loHead.untreeify(map);                else {                    tab[index] = loHead;                    if (hiHead != null) // (else is already treeified)                        loHead.treeify(tab);                }            }            if (hiHead != null) {                if (hc <= UNTREEIFY_THRESHOLD)                    tab[index + bit] = hiHead.untreeify(map);                else {                    tab[index + bit] = hiHead;                    if (loHead != null)                        hiHead.treeify(tab);                }            }        }        /* ------------------------------------------------------------ */        // Red-black tree methods, all adapted from CLR        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,                                              TreeNode<K,V> p) {            TreeNode<K,V> r, pp, rl;            if (p != null && (r = p.right) != null) {                if ((rl = p.right = r.left) != null)                    rl.parent = p;                if ((pp = r.parent = p.parent) == null)                    (root = r).red = false;                else if (pp.left == p)                    pp.left = r;                else                    pp.right = r;                r.left = p;                p.parent = r;            }            return root;        }        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,                                               TreeNode<K,V> p) {            TreeNode<K,V> l, pp, lr;            if (p != null && (l = p.left) != null) {                if ((lr = p.left = l.right) != null)                    lr.parent = p;                if ((pp = l.parent = p.parent) == null)                    (root = l).red = false;                else if (pp.right == p)                    pp.right = l;                else                    pp.left = l;                l.right = p;                p.parent = l;            }            return root;        }        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,                                                    TreeNode<K,V> x) {            x.red = true;            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {                if ((xp = x.parent) == null) {                    x.red = false;                    return x;                }                else if (!xp.red || (xpp = xp.parent) == null)                    return root;                if (xp == (xppl = xpp.left)) {                    if ((xppr = xpp.right) != null && xppr.red) {                        xppr.red = false;                        xp.red = false;                        xpp.red = true;                        x = xpp;                    }                    else {                        if (x == xp.right) {                            root = rotateLeft(root, x = xp);                            xpp = (xp = x.parent) == null ? null : xp.parent;                        }                        if (xp != null) {                            xp.red = false;                            if (xpp != null) {                                xpp.red = true;                                root = rotateRight(root, xpp);                            }                        }                    }                }                else {                    if (xppl != null && xppl.red) {                        xppl.red = false;                        xp.red = false;                        xpp.red = true;                        x = xpp;                    }                    else {                        if (x == xp.left) {                            root = rotateRight(root, x = xp);                            xpp = (xp = x.parent) == null ? null : xp.parent;                        }                        if (xp != null) {                            xp.red = false;                            if (xpp != null) {                                xpp.red = true;                                root = rotateLeft(root, xpp);                            }                        }                    }                }            }        }        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,                                                   TreeNode<K,V> x) {            for (TreeNode<K,V> xp, xpl, xpr;;) {                if (x == null || x == root)                    return root;                else if ((xp = x.parent) == null) {                    x.red = false;                    return x;                }                else if (x.red) {                    x.red = false;                    return root;                }                else if ((xpl = xp.left) == x) {                    if ((xpr = xp.right) != null && xpr.red) {                        xpr.red = false;                        xp.red = true;                        root = rotateLeft(root, xp);                        xpr = (xp = x.parent) == null ? null : xp.right;                    }                    if (xpr == null)                        x = xp;                    else {                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;                        if ((sr == null || !sr.red) &&                            (sl == null || !sl.red)) {                            xpr.red = true;                            x = xp;                        }                        else {                            if (sr == null || !sr.red) {                                if (sl != null)                                    sl.red = false;                                xpr.red = true;                                root = rotateRight(root, xpr);                                xpr = (xp = x.parent) == null ?                                    null : xp.right;                            }                            if (xpr != null) {                                xpr.red = (xp == null) ? false : xp.red;                                if ((sr = xpr.right) != null)                                    sr.red = false;                            }                            if (xp != null) {                                xp.red = false;                                root = rotateLeft(root, xp);                            }                            x = root;                        }                    }                }                else { // symmetric                    if (xpl != null && xpl.red) {                        xpl.red = false;                        xp.red = true;                        root = rotateRight(root, xp);                        xpl = (xp = x.parent) == null ? null : xp.left;                    }                    if (xpl == null)                        x = xp;                    else {                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;                        if ((sl == null || !sl.red) &&                            (sr == null || !sr.red)) {                            xpl.red = true;                            x = xp;                        }                        else {                            if (sl == null || !sl.red) {                                if (sr != null)                                    sr.red = false;                                xpl.red = true;                                root = rotateLeft(root, xpl);                                xpl = (xp = x.parent) == null ?                                    null : xp.left;                            }                            if (xpl != null) {                                xpl.red = (xp == null) ? false : xp.red;                                if ((sl = xpl.left) != null)                                    sl.red = false;                            }                            if (xp != null) {                                xp.red = false;                                root = rotateRight(root, xp);                            }                            x = root;                        }                    }                }            }        }        /**         * Recursive invariant check         */        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,                tb = t.prev, tn = (TreeNode<K,V>)t.next;            if (tb != null && tb.next != t)                return false;            if (tn != null && tn.prev != t)                return false;            if (tp != null && t != tp.left && t != tp.right)                return false;            if (tl != null && (tl.parent != t || tl.hash > t.hash))                return false;            if (tr != null && (tr.parent != t || tr.hash < t.hash))                return false;            if (t.red && tl != null && tl.red && tr != null && tr.red)                return false;            if (tl != null && !checkInvariants(tl))                return false;            if (tr != null && !checkInvariants(tr))                return false;            return true;        }    }}
final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //数组大于0,第一个元素不能null
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //第一个hash相同,key相同,直接返回第一个
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //往下个节点查找,在树节点或者链表节点
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

5.删除步骤

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    //数组长度>0 并且第一个节点不为NULL
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        //第一个节点hash相等 key相同取出元素
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) { //遍历树
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 遍历节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        
        //根据不同类型(链表/树节点进行删除)
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

6.为什么JDK8改用头插法

解决并发hashMap,链表循环CPU100%

7. 扩容详情

当++size>threshold,会触发扩容动作

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            //遍历数组槽位不为NULL
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                //数组槽位只有一个元素
                if (e.next == null)
                    //重新哈希到其他数组中
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    //如果是树结构,执行树扩容
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // 链表重新链接
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        
                        //hash & 原来的oldCap,很少部分会直接=0,大多数不等于0
                        //这样的好处就可以不用逐个映射,统一移动链表的头节点位置到新数组中即可
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

树扩容具体操作

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    TreeNode<K,V> b = this;
    // Relink into lo and hi lists, preserving order
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        //按照hash & code = 0区别映射的槽位
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }

    if (loHead != null) {
        //如果数组槽位,元素数量小于6红黑树转化为链表
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        else {
            tab[index] = loHead;
            if (hiHead != null) // (else is already treeified)
                loHead.treeify(tab);
        }
    }
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}

 

标签:解析,return,HashMap,tab,int,源码,key,hash,null
From: https://www.cnblogs.com/jichenghui/p/18358652

相关文章

  • SSM华天计算机面试刷题系统-计算机毕业设计源码22543
    基于SSM的华天计算机面试刷题系统的设计与实现摘 要    华天计算机面试刷题系统是一款基于SSM(Spring、SpringMVC、MyBatis)框架、利用Java编程语言和MySQL数据库,开发的在线学习和测试平台。系统利用SSM框架及前端开发技术,实现了模块化开发和管理,前后端交互以及数据库操......
  • springboot校园失物招领系统-计算机毕业设计源码17082
    目 录摘要1绪论1.1研究背景1.2 研究意义1.3论文结构与章节安排2 相关技术介绍2.1B/S结构2.2SpringBoot框架2.3MySQL数据库3系统分析3.1可行性分析3.2系统流程分析3.2.1数据新增流程3.2.2 数据删除流程3.3 系统功能分析3.3.1......
  • JSP怀旧影院订票系统的设计与实现74820--(程序+源码+数据库+调试部署+开发环境)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容一、选题背景与意义随着科技的飞速发展,人们观影方式日益多样化,但对于热爱经典电影的观众而言,怀旧影院仍具有不可替代的魅力。然而,传统影院在订票......
  • JSP汉庭酒店管理系统w14qp(程序+源码+数据库+调试部署+开发环境)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表系统主要功能:用户,酒店房间,预订订单,入住信息开题报告内容一、项目背景与意义随着旅游业的蓬勃发展及商务活动的日益频繁,酒店行业面临着前所未有的机遇与挑战......
  • 边缘计算技术解决行业痛点,TSINGSEE智能分析网关V4技术特点与应用场景解析
    一、行业背景随着人工智能(AI)技术的飞速发展,边缘计算硬件作为其核心组成部分,正逐步成为市场的新宠。这些硬件不仅提升了数据处理和分析的效率,还极大地降低了数据传输的延迟,为各行各业的智能化转型提供了有力支持。1、痛点1)传统企业智能化不足,海量的数据缺乏实时性的服务,网络负......
  • JSP烘焙爱好者网站q4562--程序+源码+数据库+调试部署+开发环境
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容一、项目背景与意义随着生活品质的提升,烘焙作为一种集创意、健康与乐趣于一体的生活方式,正逐渐走进千家万户。烘焙爱好者群体日益庞大,他们渴望交......
  • 全解析:华为云初创计划申请流程
    【若您对以下内容感兴趣,欢迎关注或联系我们】在当今数字化的浪潮中,华为云初创计划为众多初创企业提供了宝贵的发展机遇。(包括代金券、技术支持、商业资源等)但要顺利搭上这趟发展的快车,了解其申请流程至关重要。以下为您详细介绍华为云初创计划的常规申请流程(需注意不同渠道和......
  • 【开端】Java中Log级别和解析
    一、绪论Java系统中需要对日志进行输出,方便定位系统访问信息,系统报错信息,用于排查系统问题等。我们常常使用的日志有一下一些级别publicinterfaceLog{ booleanisDebugEnabled(); booleanisTraceEnabled(); voiderror(Strings,Throwablee); voiderror(......
  • 完美解决RTX5源码工程+最新emWin6.40的编译兼容问题,使能C编译器使用C11可解决
    最新的emWin6.40仅提供了.a格式库,这个库兼容MDK,IAR和GCC,但是在MDKAC6下使用需要做如下操作-fno-short-wchar-fshort-enums他这个操作,正好跟RTX5源码工程添加的一个设置冲突了,通过搜索资料,发现使能MDK使用C11版本编译可以完美解决这个问题:最终配置如下,确实解决了:最后就......