首页 > 编程语言 >Golang异步编程方式和技巧

Golang异步编程方式和技巧

时间:2024-07-23 13:08:06浏览次数:8  
标签:异步 协程 context 编程 sync Golang func go

Golang异步编程方式和技巧

原创 腾讯程序员 腾讯技术工程    2024年04月23日 18:00 广东 12人听过

图片

图片

Golang基于多线程、协程实现,与生俱来适合异步编程,当我们遇到那种需要批量处理且耗时的操作时,传统的线性执行就显得吃力,这时就会想到异步并行处理。下面介绍一些异步编程方式和技巧。

作者:zvalhu

一、使用方式

1.1、最简单的最常用的方式:使用go关键词

func main() {
 go func() {
  fmt.Println("hello world1")
 }()
 go func() {
  fmt.Println("hello world2")
 }()
}

或者:

func main() {
 go Announce("hello world1")
 go Announce("hello world2")
}
func Announce(message string) {
 fmt.Println(message)
}

使用匿名函数传递参数

data := "Hello, World!"
go func(msg string) {
      // 使用msg进行异步任务逻辑处理
      fmt.Println(msg)
}(data)

这种方式不需要考虑返回值问题,如果要考虑返回值,可以使用下面的方式。

1.2、通过goroutine和channel来实现

ch := make(chan int, 1) // 创建一个带缓冲的channel
// ch := make(chan int, 0) // 创建一个无缓冲的channel

go func() {
    // 异步任务逻辑
    ch <- result // 将结果发送到channel
    // 异步任务逻辑
    close(ch) // 关闭channel,表示任务完成
}()
// 在需要的时候从channel接收结果
result := <-ch

1.3、使用sync.WaitGroup

sync.WaitGroup用于等待一组协程完成其任务。通过Add()方法增加等待的协程数量,Done()方法标记协程完成,Wait()方法阻塞直到所有协程完成。

var wg sync.WaitGroup

// 启动多个协程
for i := 0; i < 5; i++ {
    wg.Add(1)
    go func(index int) {
        defer wg.Done()
        // 异步任务逻辑
    }(i)
}

// 等待所有协程完成
wg.Wait()

1.4、使用errgroup实现协程组的错误处理

如果想简单获取协程返回的错误,errgroup包很适合,errgroup包是Go语言标准库中的一个实用工具,用于管理一组协程并处理它们的错误。可以使用errgroup.Group结构来跟踪和处理协程组的错误。

var eg errgroup.Group
for i := 0; i < 5; i++ {
    eg.Go(func() error {
     return errors.New("error")
    })

    eg.Go(func() error {
     return nil
    })
}

if err := eg.Wait(); err != nil {
    // 处理错误
}

二、一些使用技巧

2.1、使用channel的range和close操作

range操作可以在接收通道上迭代值,直到通道关闭。可以使用close函数关闭通道,以向接收方指示没有更多的值。

ch := make(chan int)

go func() {
    for i := 0; i < 5; i++ {
        ch <- i // 发送值到通道
    }
    close(ch) // 关闭通道
}()

// 使用range迭代接收通道的值
for val := range ch {
    // 处理接收到的值
}

2.2、使用select语句实现多个异步操作的等待

ch1 := make(chan int)
ch2 := make(chan string)

go func() {
    // 异步任务1逻辑
    ch1 <- result1
}()

go func() {
    // 异步任务2逻辑
    ch2 <- result2
}()

// 在主goroutine中等待多个异步任务完成
select {
case res1 := <-ch1:
    // 处理结果1
case res2 := <-ch2:
    // 处理结果2
}

2.3、使用select和time.After()实现超时控制

如果需要在异步操作中设置超时,可以使用select语句结合time.After()函数实现。

ch := make(chan int)

go func() {
    // 异步任务逻辑
    time.Sleep(2 * time.Second)
    ch <- result
}()

// 设置超时时间
select {
case res := <-ch:
    // 处理结果
case <-time.After(3 * time.Second):
    // 超时处理
}

2.4、使用select和time.After()实现超时控制

如果需要在异步操作中设置超时,可以使用select语句结合time.After()函数实现。

ch := make(chan int)

go func() {
    // 异步任务逻辑
    time.Sleep(2 * time.Second)
    ch <- result
}()

// 设置超时时间
select {
case res := <-ch:
    // 处理结果
case <-time.After(3 * time.Second):
    // 超时处理
}

2.5、使用time.Tick()和time.After()进行定时操作

time.Tick()函数返回一个通道,定期发送时间值,可以用于执行定时操作。time.After()函数返回一个通道,在指定的时间后发送一个时间值。

tick := time.Tick(1 * time.Second) // 每秒执行一次操作

for {
    select {
    case <-tick:
        // 执行定时操作
    }
}

select {
case <-time.After(5 * time.Second):
    // 在5秒后执行操作
}

2.6、使用sync.Mutex或sync.RWMutex进行并发安全访问

当多个协程并发访问共享数据时,需要确保数据访问的安全性。sync.Mutex和sync.RWMutex提供了互斥锁和读写锁,用于在访问共享资源之前进行锁定,以避免数据竞争。sync.RWMutex是一种读写锁,可以在多个协程之间提供对共享资源的并发访问控制。多个协程可以同时获取读锁,但只有一个协程可以获取写锁。

var mutex sync.Mutex
var data int

// 写操作,使用互斥锁保护数据
mutex.Lock()
data = 123
mutex.Unlock()

// 读操作,使用读锁保护数据
//RLock()加读锁时,如果存在写锁,则无法加读锁;当只有读锁或者没有锁时,可以加读锁,读锁可以加载多个
mutex.RLock()
value := data
mutex.RUnlock()

var rwMutex sync.RWMutex
var sharedData map[string]string

// 读操作,使用rwMutex.RLock读锁保护数据
func readData(key string) string {
    rwMutex.RLock()
    defer rwMutex.RUnlock()
    return sharedData[key]
}

// 写操作,使用rwMutex.Lock写锁保护数据
func writeData(key, value string) {
    rwMutex.Lock()
    defer rwMutex.Unlock()
    sharedData[key] = value
}

注意:sync.Mutex 的锁是不可以嵌套使用的 sync.RWMutex 的 RLock()是可以嵌套使用的 sync.RWMutex 的 mu.Lock() 是不可以嵌套的 sync.RWMutex 的 mu.Lock() 中不可以嵌套 mu.RLock()

2.7、使用sync.Cond进行条件变量控制

sync.Cond是一个条件变量,用于在协程之间进行通信和同步。它可以在指定的条件满足之前阻塞等待,并在条件满足时唤醒等待的协程。

var cond = sync.NewCond(&sync.Mutex{})
var ready bool

go func() {
    // 异步任务逻辑
    ready = true

    // 通知等待的协程条件已满足
    cond.Broadcast()
}()

// 在某个地方等待条件满足
cond.L.Lock()
for !ready {
    cond.Wait()
}
cond.L.Unlock()

2.8、使用sync.Pool管理对象池

sync.Pool是一个对象池,用于缓存和复用临时对象,可以提高对象的分配和回收效率。

type MyObject struct {
    // 对象结构
}

var objectPool = sync.Pool{
    New: func() interface{} {
        // 创建新对象
        return &MyObject{}
    },
}

// 从对象池获取对象
obj := objectPool.Get().(*MyObject)

// 使用对象

// 将对象放回对象池
objectPool.Put(obj)

2.9、使用sync.Once实现只执行一次的操作

sync.Once用于确保某个操作只执行一次,无论有多少个协程尝试执行它,常用于初始化或加载资源等场景。

var once sync.Once
var resource *Resource

func getResource() *Resource {
    once.Do(func() {
        // 执行初始化资源的操作,仅执行一次
        resource = initResource()
    })
    return resource
}

// 在多个协程中获取资源
go func() {
    res := getResource()
    // 使用资源
}()

go func() {
    res := getResource()
    // 使用资源
}()

2.10、使用sync.Once和context.Context实现资源清理

可以结合使用sync.Once和context.Context来确保在多个协程之间只执行一次资源清理操作,并在取消或超时时进行清理。

var once sync.Once

func cleanup() {
    // 执行资源清理操作
}

func doTask(ctx context.Context) {
    go func() {
        select {
        case <-ctx.Done():
            once.Do(cleanup) // 只执行一次资源清理
        }
    }()

    // 异步任务逻辑
}

2.11、使用sync.Map实现并发安全的映射

sync.Map是Go语言标准库中提供的并发安全的映射类型,可在多个协程之间安全地进行读写操作。

var m sync.Map

// 存储键值对
m.Store("key", "value")

// 获取值
if val, ok := m.Load("key"); ok {
    // 使用值
}

// 删除键
m.Delete("key")

2.12、使用context.Context进行协程管理和取消

context.Context用于在协程之间传递上下文信息,并可用于取消或超时控制。可以使用context.WithCancel()创建一个可取消的上下文,并使用context.WithTimeout()创建一个带有超时的上下文。

ctx, cancel := context.WithCancel(context.Background())

go func() {
    // 异步任务逻辑
    if someCondition {
        cancel() // 取消任务
    }
}()

// 等待任务完成或取消
select {
case <-ctx.Done():
    // 任务被取消或超时
}

2.13、使用context.WithDeadline()和context.WithTimeout()设置截止时间

context.WithDeadline()和context.WithTimeout()函数可以用于创建带有截止时间的上下文,以限制异步任务的执行时间。

func doTask(ctx context.Context) {
    // 异步任务逻辑

    select {
    case <-time.After(5 * time.Second):
        // 超时处理
    case <-ctx.Done():
        // 上下文取消处理
    }
}

func main() {
    ctx := context.Background()
    ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
    defer cancel()

    go doTask(ctx)

    // 继续其他操作
}

2.14、使用context.WithValue()传递上下文值

context.WithValue()函数可用于在上下文中传递键值对,以在协程之间共享和传递上下文相关的值。

type keyContextValue string

func doTask(ctx context.Context) {
    if val := ctx.Value(keyContextValue("key")); val != nil {
        // 使用上下文值
    }
}

func main() {
    ctx := context.WithValue(context.Background(), keyContextValue("key"), "value")
    go doTask(ctx)

    // 继续其他操作
}

2.15、使用atomic包进行原子操作

atomic包提供了一组函数,用于实现原子操作,以确保在并发环境中对共享变量的读写操作是原子的。

var counter int64

func increment() {
    atomic.AddInt64(&counter, 1)
}

func main() {
    var wg sync.WaitGroup

    for i := 0; i < 100; i++ {
        wg.Add(1)
        go func() {
            defer wg.Done()
            increment()
        }()
    }

    wg.Wait()
    fmt.Println("Counter:", counter)
}

 

推荐阅读

在鹅厂工作的程序媛们是什么样?

 

腾讯技术工程 腾讯技术官方号。腾讯技术创新、前沿领域发布解读平台。 491篇原创内容 公众号

图片

阅读 7400 ​   喜欢此内容的人还喜欢   Android Native内存泄漏检测方案详解     腾讯技术工程   不看的原因   Nginx日志分析脚本,太好用了吧!!!!!     云原生知识栈   不看的原因   深入浅出 Kubernetes Deployment,HPA动态扩容     K8S技术栈   不看的原因 写留言     腾讯技术工程                

人划线

 

标签:异步,协程,context,编程,sync,Golang,func,go
From: https://www.cnblogs.com/cheyunhua/p/18318132

相关文章

  • 2024“钉耙编程”中国大学生算法设计超级联赛(2)1003
    绝对不模拟的简单魔方要相信题目的提示(直接模拟的代码长达300行),由于魔方的特性,不论如何转动脚上的色块颜色不会变动,只要枚举8个角块看看是否一致即可,枚举角块时需确定访问角块颜色的顺序,例如以3号为顶,后左上访问顺序为123即坐标为\((3,4)->(4,3)-(4,4)\),那么可以通过此角......
  • PHP 多线程和异步编程的常见陷阱
    本文由ChatMoney团队出品在PHP开发中,多线程和异步编程是提高应用性能和响应速度的重要手段。然而,这些技术也带来了许多挑战和陷阱,如共享状态冲突、死锁、超时、资源泄漏以及调试困难等。本文将详细探讨这些陷阱,并提供相应的解决方案和代码示例。共享状态冲突在多线程环......
  • 0基础小白学编程一定要知道的十个网站
    作为计算机专业马上要毕业的学姐分享一期——新手编程需要知道的高含金量的网站这些基础网站陪我走过一个又一个考试周,简直yyds!!那不得把我这三年来压箱底的网站交出来如果觉得对你有点用,辛苦友友一键三连哦!抱拳=.=废话不多说,直接开正文----------------------------------......
  • 在 JavaScript 异步接收到的浏览器中显示 pdf
    我有一个Django应用程序,我从JS打电话索要pdf。Django视图返回HttpResponse的application/pdf如何让JS将接收到的application/pdf数据显示为pdf?Django视图defpdf_generation(request):context={}t=get_template('html_pd......
  • UNS0881a-P,V1 3BHB006338R0001 可编程控制器PLC
    产品型号:UNS0881a-P,V13BHB006338R0001产品类别:可编程控制器PLC产品成色:全新、非全新质量保障:365天原产地;美国库存;有货品牌;ABBUNS0881a-P,V13BHB006338R0001控制板是一种电子设备,主要用于控制和管理各种电气设备。它通常由主控芯片、外设接口、电源模块、存储模......
  • 2024“钉耙编程”中国大学生算法设计超级联赛(1)第一场1001
    循环位移题解2024“钉耙编程”中国大学生算法设计超级联赛(1)题目:ProblemDescription定义字符串S=S0+⋯+Sn−1循环位移k次为S(k)=Skmodn+⋯+Sn−1+S0+⋯+S(k−1)modn。定义[A]=\setA(k),k∈N.给出T组串A,B,询问B有多少个子串在[A]中。Input第一行一个......
  • java编程 2
    1,比较运算符,比g和103是否相等???代码:publicclassbj{   publicstaticvoidmain(String[]args){       charq='g';       intw=103;       if(q==103){   System.out.println("g和103是相等的");       }else{......
  • Java编程 3
    1.轿车平均加速度   =速度的变化量/时间的变化量   轿车用了8.7秒从0千米加速到每小时100千米代码:publicclassvp{   publicstaticvoidmain(String[]args){   ints0=0;//定义变量值   ints1=(int)100.11;//浮点型强制转化成整型  ......
  • Java中的元编程与动态代理技术
    Java中的元编程与动态代理技术大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将探讨Java中的元编程与动态代理技术。这些技术使得Java开发者能够在运行时动态地生成、修改代码或行为,增强了代码的灵活性和扩展性。一、元编程概述元编程(Metaprogr......
  • Java中的虚拟线程与并发编程优化
    Java中的虚拟线程与并发编程优化大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨Java中的虚拟线程及其对并发编程的优化。虚拟线程是Java21引入的一个新特性,它可以显著提高应用的并发性能,并简化线程的管理。我们将介绍虚拟线程的基本概......