首页 > 编程语言 >【暑假Python上岸计划】最新20+Python实战案例,全程干货,30天看完即可接单就业!(基础+进阶案例+学习资料)

【暑假Python上岸计划】最新20+Python实战案例,全程干货,30天看完即可接单就业!(基础+进阶案例+学习资料)

时间:2024-06-18 17:29:39浏览次数:31  
标签:plt 20 title Python 案例 np fig df ax

前言

  • 今天给大家分享20+个基于python的实战案例,主要包含:数据分析、可视化、机器学习/深度学习、时序预测等,案例的主要特点:
* 提供源码:代码都是基于jupyter notebook,附带一定的注释,运行即可
* 数据齐全:大部分案例都有提供数据,部分案例使用内置数据集
  • 学习资料已打包,需要的小伙伴可以戳这里 学习资料

在这里插入图片描述


数据统计分析

  • 基于python和第三方库进行数据处理和分析,主要使用pandas、plotly、matplotlib等库,具体案例:
  • 电子产品(手机)销售分析:
    ①.不同内存下的销量(代码片段)
nei_cun = color_size["Number_GB"].value_counts().reset_index()  
nei_cun.columns = ["Number_of_GB","Count"]  # 重命名  
nei_cun["Number_of_GB"] = nei_cun["Number_of_GB"].apply(lambda x: str(x) + "GB")  
  
fig = px.pie(nei_cun,  
             values="Count",  
             names="Number_of_GB")  
  
fig.show()  

在这里插入图片描述

(2)不同闪存Ram下的价格分布(代码片段)

fig = px.box(df, y="Sale Price",color="Ram")  
  
fig.update_layout(height=600, width=800, showlegend=False)  
  
fig.update_layout(  
    title={ "text":'不同<b>闪存</b>下的价格分布',   
            "y":0.96,    
            "x":0.5,    
            "xanchor":"center",    
            "yanchor":"top"    
          },  
  
    xaxis_tickfont_size=12,     
    yaxis=dict(  
        title='Distribution',    
        titlefont_size=16,    
        tickfont_size=12,    
    ),  
    legend=dict(  
        x=0,    
        y=1,  
        bgcolor='rgba(255, 255, 255, 0)',    
        bordercolor='rgba(2, 255, 255, 0)'     
    )  
)  
  
fig.show()  


在这里插入图片描述

7万条餐饮数据分析

fig = px.bar(df2_top3,x="行政区",y="店铺数量",color="类别",text="店铺数量")  
fig.update_layout(title="不同行政区下不同类别的店铺数量对比")  
fig.show()  

在这里插入图片描述

  • 不同店铺下的点评数量对比:
    在这里插入图片描述* 4个指标的关系:口味、环境、服务和人均消费
    在这里插入图片描述
学习资料已打包,需要的小伙伴可以戳这里 学习资料

基于python实现RFM模型(用户画像)

* RFM模型是客户关系管理(CRM)中的一种重要分析模型,用于衡量客户价值和客户创利能力。该模型通过以下三个指标来评估客户的价值和发展潜力:
* 近期购买行为(R):指的是客户最近一次购买的时间间隔。这个指标可以反映客户的活跃程度和购买意向,进而判断客户的质量和潜在价值。
* 购买的总体频率(F):指的是客户在一定时间内购买商品的次数。这个指标可以反映客户对品牌的忠诚度和消费习惯,进而判断客户的潜力和价值。
* 花了多少钱(M):指的是客户在一定时间内购买商品的总金额。这个指标可以反映客户的消费能力和对品牌的认可度,进而判断客户的价值和潜力。
  • 计算R、F、M三个指标值:
data['Recency'] = (datetime.now().date() - data['PurchaseDate'].dt.date).dt.days  
  
frequency_data = data.groupby('CustomerID')['OrderID'].count().reset_index()  
# 重命名  
frequency_data.rename(columns={'OrderID': 'Frequency'}, inplace=True)  
  
monetary_data = data.groupby('CustomerID')['TransactionAmount'].sum().reset_index()  
monetary_data.rename(columns={'TransactionAmount': 'MonetaryValue'}, inplace=True)  

可视化

  • 可视化主要是讲解了matplotlib的3D图和统计相关图形的绘制和plotly_express的入门:
    ①.matplotlib的3D图形绘制
plt.style.use('fivethirtyeight')  
fig = plt.figure(figsize=(8,6))  
  
ax = fig.gca(projection='3d')  
  
z = np.linspace(0, 20, 1000)  
x = np.sin(z)  
y = np.cos(z)  
  
surf=ax.plot3D(x,y,z)  
  
z = 15 * np.random.random(200)  
x = np.sin(z) + 0.1 * np.random.randn(200)  
y = np.cos(z) + 0.1 * np.random.randn(200)  
ax.scatter3D(x, y, z, c=z, cmap='Greens')  
  
plt.show()  

在这里插入图片描述

plt.style.use('fivethirtyeight')  
fig = plt.figure(figsize=(14,8))  
  
ax = plt.axes(projection='3d')  
ax.plot_surface(x,   
                y,  
                z,   
                rstride=1,  
                cstride=1,   
                cmap='viridis',  
                edgecolor='none')  
  
ax.set_title('surface')  
  
# ax.set(xticklabels=[],  # 隐藏刻度  
#        yticklabels=[],  
#        zticklabels=[])  
  
plt.show()  

在这里插入图片描述
②.统计图形绘制
绘制箱型图:

np.random.seed(10)  
D = np.random.normal((3, 5, 4), (1.25, 1.00, 1.25), (100, 3))  
  
fig, ax = plt.subplots(2, 2, figsize=(9,6), constrained_layout=True)  
  
ax[0,0].boxplot(D, positions=[1, 2, 3])  
ax[0,0].set_title('positions=[1, 2, 3]')  
  
ax[0,1].boxplot(D, positions=[1, 2, 3], notch=True)  # 凹槽显示  
ax[0,1].set_title('notch=True')  
  
ax[1,0].boxplot(D, positions=[1, 2, 3], sym='+')  # 设置标记符号  
ax[1,0].set_title("sym='+'")  
  
ax[1,1].boxplot(D, positions=[1, 2, 3],   
                patch_artist=True,  
                showmeans=False,   
                showfliers=False,  
                medianprops={"color": "white", "linewidth": 0.5},  
                boxprops={"facecolor": "C0", "edgecolor": "white", "linewidth": 0.5},  
                whiskerprops={"color": "C0", "linewidth": 1.5},  
                capprops={"color": "C0", "linewidth": 1.5})  
ax[1,1].set_title("patch_artist=True")  
  
# 设置每个子图的x-y轴的刻度范围  
for i in np.arange(2):  
    for j in np.arange(2):  
        ax[i,j].set(xlim=(0, 4), xticks=[1,2,3],  
                    ylim=(0, 8), yticks=np.arange(0, 9))  
  
plt.show()  

在这里插入图片描述
绘制栅格图:

np.random.seed(1)  
x = [2, 4, 6]  
D = np.random.gamma(4, size=(3, 50))  
  
# plt.style.use('fivethirtyeight')  
  
fig, ax = plt.subplots(2, 2, figsize=(9,6), constrained_layout=True)  
  
# 默认栅格图-水平方向  
ax[0,0].eventplot(D)  
ax[0,0].set_title('default')  
  
# 垂直方向  
ax[0,1].eventplot(D,   
                  orientation='vertical',   
                  lineoffsets=[1,2,3])  
ax[0,1].set_title("orientation='vertical', lineoffsets=[1,2,3]")  
  
ax[1,0].eventplot(D,   
                  orientation='vertical',  
                  lineoffsets=[1,2,3],  
                  linelengths=0.5) # 线条长度  
ax[1,0].set_title('linelengths=0.5')  
  
ax[1,1].eventplot(D,   
                  orientation='vertical',  
                  lineoffsets=[1,2,3],  
                  linelengths=0.5,  
                 colors='orange')  
ax[1,1].set_title("colors='orange'")  
  
  
plt.show()  

在这里插入图片描述
③.plotly_express入门 使用plotly_express如何快速绘制散点图、散点矩阵图、气泡图、箱型图、小提琴图、经验累积分布图、旭日图等
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

机器学习

基于机器学习的Titanic生存预测

  • 目标变量分析:
    在这里插入图片描述
    在这里插入图片描述
  • 相关性分析:
    在这里插入图片描述
  • 基于树模型的特征重要性排序代码:
f,ax=plt.subplots(2,2,figsize=(15,12))  
  
# 1、模型  
rf=RandomForestClassifier(n_estimators=500,random_state=0)  
# 2、训练  
rf.fit(X,Y)  
# 3、重要性排序  
pd.Series(rf.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[0,0])  
# 4、添加标题  
ax[0,0].set_title('Feature Importance in Random Forests')  
  
ada=AdaBoostClassifier(n_estimators=200,learning_rate=0.05,random_state=0)  
ada.fit(X,Y)  
pd.Series(ada.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[0,1],color='#9dff11')  
ax[0,1].set_title('Feature Importance in AdaBoost')  
  
gbc=GradientBoostingClassifier(n_estimators=500,learning_rate=0.1,random_state=0)  
gbc.fit(X,Y)  
pd.Series(gbc.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[1,0],cmap='RdYlGn_r')  
ax[1,0].set_title('Feature Importance in Gradient Boosting')  
  
xgbc=xg.XGBClassifier(n_estimators=900,learning_rate=0.1)  
xgbc.fit(X,Y)  
pd.Series(xgbc.feature_importances_, X.columns).sort_values(ascending=True).plot.barh(width=0.8,ax=ax[1,1],color='#FD0F00')  
ax[1,1].set_title('Feature Importance in XgBoost')  
  
plt.show()      
  • 不同模型对比:
    在这里插入图片描述

基于KNN算法的iris数据集分类

  • 特征分布情况:
pd.plotting.scatter_matrix(X_train,   
                           c=y_train,   
                           figsize=(15, 15),  
                           marker='o',   
                           hist_kwds={'bins': 20},   
                           s=60,  
                           alpha=.8  
                          )  
  
plt.show()  

在这里插入图片描述* 混淆矩阵:

from sklearn.metrics import classification_report,f1_score,accuracy_score,confusion_matrix  
sns.heatmap(confusion_matrix(y_pred, y_test), annot=True)  
plt.show()  

在这里插入图片描述

  • 对新数据预测:
x_new = np.array([[5, 2.9, 1, 0.2]])  
  
prediction = knn.predict(x_new)  

基于随机森林算法的员工流失预测

  • 不同教育背景下的人群对比:
fig = go.Figure(data=[go.Pie(  
    labels=attrition_by['EducationField'],  
    values=attrition_by['Count'],  
    hole=0.4,  
    marker=dict(colors=['#3CAEA3', '#F6D55C']),  
    textposition='inside'  
)])  
  
  
fig.update_layout(title='Attrition by Educational Field',   
                  font=dict(size=12),   
                  legend=dict(  
                      orientation="h",  
                      yanchor="bottom",  
                      y=1.02,   
                      xanchor="right",  
                      x=1  
))  
  
fig.show()  

在这里插入图片描述

  • 年龄和月收入关系:
    在这里插入图片描述
  • 类型编码:
from sklearn.preprocessing import LabelEncoder  
le = LabelEncoder()  
  
df['Attrition'] = le.fit_transform(df['Attrition'])  
df['BusinessTravel'] = le.fit_transform(df['BusinessTravel'])  
df['Department'] = le.fit_transform(df['Department'])  
df['EducationField'] = le.fit_transform(df['EducationField'])  
df['Gender'] = le.fit_transform(df['Gender'])  
df['JobRole'] = le.fit_transform(df['JobRole'])  
df['MaritalStatus'] = le.fit_transform(df['MaritalStatus'])  
df['Over18'] = le.fit_transform(df['Over18'])  
df['OverTime'] = le.fit_transform(df['OverTime'])  
  • 相关性分析:
    在这里插入图片描述

基于LSTM的股价预测

  • LSTM网络模型搭建:
from keras.models import Sequential  
from keras.layers import Dense, LSTM  
  
model = Sequential()  
# 输入层  
model.add(LSTM(128, return_sequences=True, input_shape= (xtrain.shape[1], 1)))  
# 隐藏层  
model.add(LSTM(64, return_sequences=False))  
model.add(Dense(25))  
# 输出层  
model.add(Dense(1))  
# 模型概览  
model.summary()
  • 交叉验证实现:
k = 5  
number_val = len(xtrain) // k  # 验证数据集的大小  
number_epochs = 20  
all_mae_scores = []  
all_loss_scores = []  
  
for i in range(k):  
    # 只取i到i+1部分作为验证集  
    vali_X = xtrain[i * number_val: (i+1) * number_val]  
    vali_y = ytrain[i * number_val: (i+1) * number_val]  
  
    # 训练集  
    part_X_train = np.concatenate([xtrain[:i * number_val],  
                                  xtrain[(i+1) * number_val:]],  
                                  axis=0  
                                 )   
    part_y_train = np.concatenate([ytrain[:i * number_val],  
                                  ytrain[(i+1) * number_val:]],  
                                  axis=0  
                                 )  
      
    print("pxt: \n",part_X_train[:3])  
    print("pyt: \n",part_y_train[:3])  
      
    # 模型训练  
    history = model.fit(part_X_train,  
                        part_y_train,  
                        epochs=number_epochs,  
                        # 传入验证集的数据  
                        validation_data=(vali_X, vali_y),  
                        batch_size=300,  
                        verbose=0  # 0-静默模式 1-日志模式  
                       )  
      
    mae_history = history.history["mae"]  
    loss_history = history.history["loss"]  
    all_mae_scores.append(mae_history)  
    all_loss_scores.append(loss_history)  

时序预测

基于AMIRA的销量预测

  • 自相关性图:
    在这里插入图片描述
  • 偏自相关性:
    在这里插入图片描述
  • 预测未来10天
p,d,q = 5,1,2  
model = sm.tsa.statespace.SARIMAX(df['Revenue'],  
                                order=(p, d, q),  
                                seasonal_order=(p, d, q, 12))  
model = model.fit()  
model.summary()  
ten_predictions = model.predict(len(df), len(df) + 10)  # 预测10天  

在这里插入图片描述

基于prophet的天气预测

  • 特征间的关系:
    在这里插入图片描述
    在这里插入图片描述* 预测效果:
    在这里插入图片描述

其他案例

python的6种实现99乘法表

  • 提供2种:
for i in range(1, 10):  
    for j in range(1, i+1):  # 例如3*3、4*4的情况,必须保证j能取到i值,所以i+1;range函数本身是不包含尾部数据  
        print(f'{j}x{i}={i*j} ', end="")  # end默认是换行;需要改成空格  
    print("\n")  # 末尾自动换空行  
for i in range(1, 10):       # 外层循环  
    j = 1      # 内层循环初始值  
    while j <= i:      # 内层循环条件:从1开始循环  
        print("{}x{}={}".format(i,j,(i*j)), end=' ')  # 输出格式  
        j += 1  # j每循环一次加1,进入下次,直到j<=i的条件不满足,再进入下个i的循环中  
    print("\n")  
i = 1  # i初始值  
  
while i <= 9:  # 循环终止条件  
    j = 1  # j初始值  
    while j <= i:    # j的大小由i来控制  
        print(f'{i}x{j}={i*j} ', end='')  
        j += 1   # j每循环一次都+1,直到j<=i不再满足,跳出这个while循环   
    i += 1  # 跳出上面的while循环后i+1,只要i<9就换行进入下一轮的循环;否则结束整个循环  
    print('\n')  

python实现简易计算器(GUI界面)

  • 提供部分代码:
import tkinter as tk  
  
root = tk.Tk()    
root.title("Standard Calculator")    
root.resizable(0, 0)    
  
  
e = tk.Entry(root,  
             width=35,  
             bg='#f0ffff',  
             fg='black',  
             borderwidth=5,  
             justify='right',  
             font='Calibri 15')  
  
e.grid(row=0, column=0, columnspan=3, padx=12, pady=12)  
  
# 点击按钮  
def buttonClick(num):   
    temp = e.get(  
    )    
    e.delete(0, tk.END)    
    e.insert(0, temp + num)    
  
# 清除按钮  
def buttonClear():    
    e.delete(0, tk.END)  
  
  
def buttonGet(oper):    
    global num1, math    
    num1 = e.get()    
    math = oper    
    e.insert(tk.END, math)  
    try:  
        num1 = float(num1)    
    except ValueError:    
        buttonClear()

学习资料已打包,需要的小伙伴可以戳这里[学习资料]或扫描下方码!!!!!!!

在这里插入图片描述

标签:plt,20,title,Python,案例,np,fig,df,ax
From: https://blog.csdn.net/m0_75067840/article/details/139631274

相关文章

  • Lightroom Classic for mac/win (Lrc2021) 10.3中文直装版
    LightroomClassic是Adobe公司开发的一款专业的照片处理和管理软件,旨在帮助摄影师对其作品进行全方位的后期处理,包括调整画面的明暗、色彩、对比度等,以及进行修图、拼接和摄影作品的管理整理等功能。它是摄影师和摄影爱好者常用的后期处理软件之一,可以在室内外的各种场景中进行......
  • 【Python】python实现双向链表
    一、定义与结构双向链表(DoublyLinkedList)是一种链式数据结构,每个节点(Node)包含三个部分:一个数据域(data),一个指向前驱节点的指针(prev),以及一个指向后继节点的指针(next)。双向链表的每个节点都链接到前一个节点和后一个节点,从而允许在两个方向上进行遍历。双向链表的结构+---......
  • 自动化之python读取目录结构转换为element-plus tree结构
    defget_project_tree(start_path:str,original_path:str,tree_data:list):child_files=os.listdir(start_path)forchild_fileinchild_files:ifchild_filein['.gitignore','.idea','venv','__pycache__......
  • 2024年设计、数字化技术与新闻传播国际学术会议(ICDDTJ 2024)
    2024年设计、数字化技术与新闻传播国际学术会议(ICDDTJ2024)2024InternationalConferenceonDesign,DigitalTechnologyandJournalism会议地点:哈尔滨,中国网址:www.icddtj.com邮箱:icddtj@sub-conf.com投稿主题请注明:ICDDTJ2024+通讯作者姓名(否则无法确认您的稿件......
  • 2024年城市规划、建设与区域发展国际学术会议(ICUPCRD 2024)
    2024年城市规划、建设与区域发展国际学术会议(ICUPCRD2024)2024InternationalConferenceonUrbanPlanning,ConstructionandRegionalDevelopment会议地点:上海,中国网址:www.icupcrd.com邮箱:icupcrd@sub-conf.com投稿主题请注明:ICUPCRD2024+通讯作者姓名(否则无法......
  • 人工智能大模型发展八大趋势与行业应用案例
    随着科技的不断发展,人工智能已经成为了当今世界的热门话题之一。在这个领域,研究和发展的趋势也在不断变化。以下是人工智能研究与发展的八大趋势:1.强化学习的突破强化学习是人工智能领域的一个重要分支,它通过智能体与环境的交互学习来实现目标。近年来,随着深度学习技术的......
  • 如何评价2024年全国大学生数据统计与分析竞赛B题?
    2024年全国大学生数据统计与分析竞赛B题:建立电信银行卡诈骗检测问题的数据分析和机器学习模型本文文章较长,建议先看目录。经过多天的奋战,目前我们已经完成了2024年全国大学生数据统计与分析竞赛B题的40+页完整论文和代码,文章较长,建议可以先看目录,完整版本可见文末参考摘要本......
  • 【ACM独立出版/Fellow大咖云集】 第三届机器人、人工智能与信息工程国际学术会议(RAIIE
    2024年第二届机器人、人工智能与信息工程国际学术会议(RAIIE2024)将于2024年7月5-7日在新加坡举行。本次会议主要围绕“机器人”、“智能仿生”和“信息科学”的最新研究进展展开,会议汇聚了该领域内国际学者、专家、研究人员及相关从业人员,分享研究成果,探讨机器人的最新发展趋势,为......
  • 2024年: 您准备好进行持续绩效管理了吗?
    在过去几年中,”人力资源“这个既最重要又最讨厌的过程受到了关注。每个人都在跃跃欲试,从静态的、以快照为基础的年度回顾转向频繁的双向对话。这是一个正确的时机;在当今复杂的业务和人际关系中,我们需要进行上下左右的沟通,以确保每个人都朝着同一个目标努力。但这并不是简单的“......
  • Character Animator 2024 mac/win版:赋予角色生命,动画更传神
    CharacterAnimator2024是一款强大的角色动画制作软件,以其创新的功能和卓越的性能,为动画师、游戏开发者以及设计师们带来了全新的创作体验。CharacterAnimator2024mac/win版获取 这款软件采用了先进的骨骼绑定技术,使得角色动画的制作变得更为轻松和精准。用户可以轻松地......