首页 > 编程语言 >Python 全栈体系【四阶】(五十七)

Python 全栈体系【四阶】(五十七)

时间:2024-06-05 22:58:33浏览次数:15  
标签:四阶 Python 0.067 labels list idf 全栈 TF corpus

第五章 深度学习

十三、自然语言处理(NLP)

2. 传统NLP处理技术

2.4 关键词提取

关键词提取是提取出代表文章重要内容的一组词,对文本聚类、分类、自动摘要起到重要作用。此外,关键词提取还能使人们便捷地浏览和获取信息。现实中大量文本不包含关键词,自动提取关检测技术具有重要意义和价值。关键词提取包括有监督学习、无监督学习方法两类。

有监督关键词提取。该方法主要通过分类方式进行,通过构建一个较为丰富完整的词表,然后通过判断每个文档与词表中每个词的匹配程度,以类似打标签的方式,达到关键词提取的效果。该方法能获取较高的精度,但需要对大量样本进行标注,人工成本过高。另外,现在每天都有大量新的信息出现,固定词表很难将新信息内容表达出来,但人工实时维护词表成本过高。所以,有监督学习关键词提取方法有较明显的缺陷。

无监督关键词提取。相对于有监督关键词提取,无监督方法对数据要求低得多,既不需要人工维护词表,也不需要人工标注语料辅助训练。因此,在实际应用中更受青睐。这里主要介绍无监督关键词提取算法,包括TF-IDF算法,TextRank算法和主题模型算法。

2.4.1 TF-IDF算法

TF-IDF(Term Frequency-Inverse Document Frequency,词频-逆文档频率)是一种基于传统的统计计算方法,常用于评估一个文档集中一个词对某份文档的重要程度。其基本思想是:一个词语在文档中出现的次数越多、出现的文档越少,语义贡献度越大(对文档区分能力越强)。TF-IDF表达式由两部分构成,词频、逆文档频率。词频定义为:

T F i j = n j i ∑ k n k j TF_{ij} = \frac{n_{ji}}{\sum_k n_{kj}} TFij​=∑k​nkj​nji​​

其中, n i j n_{ij} nij​表示词语i在文档j中出现的次数,分母 ∑ k n k j \sum_k n_{kj} ∑k​nkj​表示所有文档总次数。逆文档频率定义为:

I D F i = l o g ( ∣ D ∣ ∣ D i ∣ + 1 ) IDF_i = log(\frac{|D|}{|D_i| + 1}) IDFi​=log(∣Di​∣+1∣D∣​)

其中, ∣ D ∣ |D| ∣D∣为文档总数, D i D_i Di​为文档中出现词i的文档数量,分母加1是避免分母为0的情况(称为拉普拉斯平滑),TF-IDF算法是将TF和IDF综合使用,表达式为:

T F − I D F = T F i j × I D F i = n j i ∑ k n k j × l o g ( ∣ D ∣ ∣ D i ∣ + 1 ) TF-IDF = TF_{ij} \times IDF_i =\frac{n_{ji}}{\sum_k n_{kj}} \times log(\frac{|D|}{|D_i| + 1}) TF−IDF=TFij​×IDFi​=∑k​nkj​nji​​×log(∣Di​∣+1∣D∣​)

由公式可知,词频越大,该值越大;出现的文档数越多(说明该词越通用),逆文档频率越接近0,语义贡献度越低。例如有以下文本:

世界献血日,学校团体、献血服务志愿者等可到血液中心参观检验加工过程,我们会对检验结果进行公示,同时血液的价格也将进行公示。

以上文本词语总数为30,计算几个词的词频:

T F 献血 = 2 / 30 ≈ 0.067 T F 血液 = 2 / 30 ≈ 0.067 T F 进行 = 2 / 30 ≈ 0.067 T F 公示 = 2 / 30 ≈ 0.067 TF_{献血} = 2 / 30 \approx 0.067 \\ TF_{血液} = 2 / 30 \approx 0.067 \\ TF_{进行} = 2 / 30 \approx 0.067 \\ TF_{公示} = 2 / 30 \approx 0.067 TF献血​=2/30≈0.067TF血液​=2/30≈0.067TF进行​=2/30≈0.067TF公示​=2/30≈0.067

假设出现献血、血液、进行、公示文档数量分别为10、15、100、50,根据TF-IDF计算公式,得:

T F − I D F 献血 = 0.067 ∗ l o g ( 1000 / 10 ) = 0.067 ∗ 2 = 0.134 T F − I D F 血液 = 0.067 ∗ l o g ( 1000 / 15 ) = 0.067 ∗ 1.824 = 0.1222 T F − I D F 进行 = 0.067 ∗ l o g ( 1000 / 100 ) = 0.067 ∗ 1 = 0.067 T F − I D F 公示 = 0.067 ∗ l o g ( 1000 / 50 ) = 0.067 ∗ 1.30 = 0.08717 TF-IDF_{献血} = 0.067 * log(1000/10) = 0.067 * 2 = 0.134\\ TF-IDF_{血液} = 0.067 * log(1000/15) = 0.067 * 1.824 = 0.1222 \\ TF-IDF_{进行} = 0.067 * log(1000/100) = 0.067 * 1 = 0.067 \\ TF-IDF_{公示} = 0.067 * log(1000/50) = 0.067 * 1.30 = 0.08717 TF−IDF献血​=0.067∗log(1000/10)=0.067∗2=0.134TF−IDF血液​=0.067∗log(1000/15)=0.067∗1.824=0.1222TF−IDF进行​=0.067∗log(1000/100)=0.067∗1=0.067TF−IDF公示​=0.067∗log(1000/50)=0.067∗1.30=0.08717

“献血”、“血液”的TF-IDF值最高,所以为最适合这篇文档的关键词。

2.4.2 TextRank算法

与TF-IDF不一样,TextRank算法可以脱离于语料库,仅对单篇文档进行分析就可以提取该文档的关键词,这也是TextRank算法的一个重要特点。TextRank算法最早用于文档的自动摘要,基于句子维度的分析,利用算法对每个句子进行打分,挑选出分数最高的n个句子作为文档的关键句,以达到自动摘要的效果。

TextRank算法的基本思想来源于Google的PageRank算法,该算法是Google创始人拉里·佩奇和希尔盖·布林于1997年构建早期的搜索系统原型时提出的链接分析法,用于评价搜索系统各覆盖网页重要性的一种方法。随着Google的成功,该算法也称为其它搜索引擎和学术界十分关注的计算模型。

在这里插入图片描述

PageRank基本思想有两条:

  • 链接数量。一个网页被越多的其它网页链接,说明这个网页越重要
  • 链接质量。一个网页被一个越高权值的网页链接,也能表明这个网页越重要

基于上述思想,一个网页的PageRank计算公式可以表示为:

S ( V i ) = ∑ j ∈ I n ( V i ) ( 1 O u t ( V j ) × S ( V j ) ) S(V_i) = \sum_{j \in In(V_i)} \Bigg( \frac{1}{Out(V_j)} \times S(V_j) \Bigg) S(Vi​)=j∈In(Vi​)∑​(Out(Vj​)1​×S(Vj​))

其中, I n ( V i ) In(V_i) In(Vi​)为 V i V_i Vi​的入链集合, O u t ( V j ) Out(V_j) Out(Vj​)为 V j V_j Vj​的出链集合, ∣ O u t ( V j ) ∣ |Out(V_j)| ∣Out(Vj​)∣为出链的数量。因为每个网页要将它自身的分数平均贡献给每个出链,则 ( 1 O u t ( V j ) × S ( V j ) ) \Bigg( \frac{1}{Out(V_j)} \times S(V_j) \Bigg) (Out(Vj​)1​×S(Vj​))即为 V i V_i Vi​贡献给 V j V_j Vj​的分数。将所有入链贡献给它的分数全部加起来,就是 V i V_i Vi​自身的得分。算法开始时,将所有页面的得分均初始化为1。

对于一些孤立页面,可能链入、链出的页面数量为0,为了避免这种情况,对公式进行了改造,加入了一个阻尼系数 d d d,这样,即使孤立页面也有一个得分。改造后的公式如下:

S ( V i ) = ( 1 − d ) + d × ∑ j ∈ I n ( V i ) ( 1 O u t ( V j ) × S ( V j ) ) S(V_i) = (1 - d) + d \times \sum_{j \in In(V_i)} \Bigg( \frac{1}{Out(V_j)} \times S(V_j) \Bigg) S(Vi​)=(1−d)+d×j∈In(Vi​)∑​(Out(Vj​)1​×S(Vj​))

以上就是PageRank的理论,也是TextRank的理论基础,不同于的是TextRank不需要与文档中的所有词进行链接,而是采用一个窗口大小,在窗口中的词互相都有链接关系。例如对下面的文本进行窗口划分:

世界献血日,学校团体、献血服务志愿者等可到血液中心参观检验加工过程,我们会对检验结果进行公示,同时血液的价格也将进行公示。

如果将窗口大小设置为5,则可得到如下计算窗口:

[世界,献血,日,学校,团体]
[献血,日,学校,团体,献血]
[日,学校,团体,献血,服务]
[学校,团体,献血,服务,志愿者]
……

每个窗口内所有词之间都有链接关系,如[世界]和[献血,日,学校,团体]之间有链接关系。得到了链接关系,就可以套用TextRank公式,计算每个词的得分,最后选择得分最高的N个词作为文档的关键词。

2.4.3 关键词提取示例

本案例演示了通过自定义TF-IDF、调用TextRank API实现关键字提取

# -*- coding: utf-8 -*-

import math
import jieba
import jieba.posseg as psg
from gensim import corpora, models
from jieba import analyse
import functools
import numpy as np


# 停用词表加载方法
def get_stopword_list():
    # 停用词表存储路径,每一行为一个词,按行读取进行加载
    # 进行编码转换确保匹配准确率
    stop_word_path = '../data/stopword.txt'
    with open(stop_word_path, "r", encoding="utf-8") as f:
        lines = f.readlines()

    stopword_list = [sw.replace('\n', '') for sw in lines]
    return stopword_list


# 去除停用词
def word_filter(seg_list):
    filter_list = []
    for word in seg_list:
        # 过滤停用词表中的词,以及长度为<2的词
        if not word in stopword_list and len(word) > 1:
            filter_list.append(word)

    return filter_list


# 数据加载,pos为是否词性标注的参数,corpus_path为数据集路径
def load_data(corpus_path):
    # 调用上面方式对数据集进行处理,处理后的每条数据仅保留非干扰词
    doc_list = []
    for line in open(corpus_path, 'r', encoding='utf-8'):  # 循环读取一行(一行即一个文档)
        content = line.strip()  # 去空格
        seg_list = jieba.cut(content)  # 分词
        filter_list = word_filter(seg_list)  # 去除停用词
        doc_list.append(filter_list)  # 将分词后的内容添加到列表

    return doc_list


# idf值统计方法
def train_idf(doc_list):
    idf_dic = {}
    tt_count = len(doc_list)  # 总文档数

    # 每个词出现的文档数
    for doc in doc_list:
        doc_set = set(doc)  # 将词推入集合去重
        for word in doc_set:  # 词语在文档中
            idf_dic[word] = idf_dic.get(word, 0.0) + 1.0  # 文档数加1

    # 按公式转换为idf值,分母加1进行平滑处理
    for word, doc_cnt in idf_dic.items():
        idf_dic[word] = math.log(tt_count / (1.0 + doc_cnt))

    # 对于没有在字典中的词,默认其仅在一个文档出现,得到默认idf值
    default_idf = math.log(tt_count / (1.0))

    return idf_dic, default_idf


# TF-IDF类
class TfIdf(object):
    def __init__(self, idf_dic, default_idf, word_list, keyword_num):
        """
        TfIdf类构造方法
        :param idf_dic: 训练好的idf字典
        :param default_idf: 默认idf值
        :param word_list: 待提取文本
        :param keyword_num: 关键词数量
        """
        self.word_list = word_list
        self.idf_dic, self.default_idf = idf_dic, default_idf # 逆文档频率
        self.tf_dic = self.get_tf_dic()  # 词频
        self.keyword_num = keyword_num

    # 统计tf值
    def get_tf_dic(self):
        tf_dic = {}  # 词频字典
        for word in self.word_list:
            tf_dic[word] = tf_dic.get(word, 0.0) + 1.0

        total = len(self.word_list)  # 词语总数
        for word, word_cnt in tf_dic.items():
            tf_dic[word] = float(word_cnt) / total

        return tf_dic

    # 按公式计算tf-idf
    def get_tfidf(self):
        tfidf_dic = {}
        for word in self.word_list:
            idf = self.idf_dic.get(word, self.default_idf)
            tf = self.tf_dic.get(word, 0)

            tfidf = tf * idf  # 计算TF-IDF
            tfidf_dic[word] = tfidf

        # 根据tf-idf排序,去排名前keyword_num的词作为关键词
        s_list = sorted(tfidf_dic.items(), key=lambda x: x[1], reverse=True)
        # print(s_list)
        top_list = s_list[:self.keyword_num]  # 切出前N个
        for k, v in top_list:
            print(k + ", ", end='')
        print()


def tfidf_extract(word_list, keyword_num=20):
    doc_list = load_data('../data/corpus.txt')  # 读取文件内容
    # print(doc_list)
    idf_dic, default_idf = train_idf(doc_list) # 计算逆文档频率

    tfidf_model = TfIdf(idf_dic, default_idf, word_list, keyword_num)
    tfidf_model.get_tfidf()


def textrank_extract(text, keyword_num=20):
    keywords = analyse.textrank(text, keyword_num)
    # 输出抽取出的关键词
    for keyword in keywords:
        print(keyword + ", ", end='')
    print()


if __name__ == '__main__':
    global stopword_list

    text = """在中国共产党百年华诞的重要时刻,在“两个一百年”奋斗目标历史交汇关键节点,
    党的十九届六中全会的召开具有重大历史意义。全会审议通过的《决议》全面系统总结了党的百年奋斗
    重大成就和历史经验,特别是着重阐释了党的十八大以来党和国家事业取得的历史性成就、发生的历史性变革,
    充分彰显了中国共产党的历史自觉与历史自信。"""

    stopword_list = get_stopword_list()

    seg_list = jieba.cut(text)  # 分词
    filter_list = word_filter(seg_list)

    # TF-IDF提取关键词
    print('TF-IDF模型结果:')
    tfidf_extract(filter_list)

    # TextRank提取关键词
    print('TextRank模型结果:')
    textrank_extract(text)

执行结果:

TF-IDF模型结果:
历史, 中国共产党, 百年, 历史性, 华诞, 一百年, 奋斗目标, 交汇, 节点, 十九, 六中全会, 全会, 奋斗, 重大成就, 着重, 阐释, 十八, 党和国家, 成就, 变革,

TextRank模型结果:
历史, 历史性, 意义, 成就, 决议, 审议, 发生, 系统, 总结, 全面, 节点, 关键, 交汇, 召开, 具有, 全会, 取得, 事业, 自信, 变革,
2.5 综合案例
垃圾邮件分类
  • 数据集介绍:包含5000份正常邮件、5001份垃圾邮件的样本
  • 文本特征处理方式:采用TF-IDF作为文本特征值
  • 模型选择:朴素贝叶斯、支持向量机模型
  • 基本流程:读取数据 → 去除停用词和特殊符号 → 计算TF-IDF特征值 → 模型训练 → 预测 → 打印结果
# -*- coding: utf-8 -*-
# 利用TF-IDF特征、朴素贝叶斯/支持向量机实现垃圾邮件分类
import numpy as np
import re
import string
import sklearn.model_selection as ms
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn import metrics

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer

label_name_map = ["垃圾邮件", "正常邮件"]


# 分词
def tokenize_text(text):
    tokens = jieba.cut(text)  # 分词
    tokens = [token.strip() for token in tokens]  # 去空格
    return tokens


def remove_special_characters(text):
    tokens = tokenize_text(text)
    # escape函数对字符进行转义处理
    # compile函数用于编译正则表达式,生成一个 Pattern 对象
    pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
    # filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表
    # sub函数进行正则匹配字符串替换
    filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
    filtered_text = ' '.join(filtered_tokens)
    return filtered_text


# 去除停用词
def remove_stopwords(text):
    tokens = tokenize_text(text)  # 分词、去空格
    filtered_tokens = [token for token in tokens if token not in stopword_list]  # 去除停用词
    filtered_text = ''.join(filtered_tokens)
    return filtered_text


# 规范化处理
def normalize_corpus(corpus):
    result = []  # 处理结果

    for text in corpus:  # 遍历每个词汇
        text = remove_special_characters(text)  # 去除标点符号
        text = remove_stopwords(text)  # 去除停用词
        result.append(text)

    return result


def tfidf_extractor(corpus):
    vectorizer = TfidfVectorizer(min_df=1,
                                 norm='l2',
                                 smooth_idf=True,
                                 use_idf=True)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features


def get_data():
    '''
    获取数据
    :return: 文本数据,对应的labels
    '''
    corpus = []  # 邮件内容
    labels = []  # 标签(0-垃圾邮件 1-正常邮件)

    # 正常邮件
    with open("data/ham_data.txt", encoding="utf8") as f:
        for line in f.readlines():
            corpus.append(line)
            labels.append(1)

    # 垃圾邮件
    with open("data/spam_data.txt", encoding="utf8") as f:
        for line in f.readlines():
            corpus.append(line)
            labels.append(0)

    return corpus, labels


# 过滤空文档
def remove_empty_docs(corpus, labels):
    filtered_corpus = []
    filtered_labels = []

    for doc, label in zip(corpus, labels):
        if doc.strip():
            filtered_corpus.append(doc)
            filtered_labels.append(label)

    return filtered_corpus, filtered_labels


# 计算并打印分类指标
def print_metrics(true_labels, predicted_labels):
    # Accuracy
    accuracy = metrics.accuracy_score(true_labels, predicted_labels)

    # Precision
    precision = metrics.precision_score(true_labels,
                                        predicted_labels,
                                        average='weighted')

    # Recall
    recall = metrics.recall_score(true_labels,
                                  predicted_labels,
                                  average='weighted')

    # F1
    f1 = metrics.f1_score(true_labels,
                          predicted_labels,
                          average='weighted')

    print("正确率: %.2f, 查准率: %.2f, 召回率: %.2f, F1: %.2f" % (accuracy, precision, recall, f1))


if __name__ == "__main__":
    global stopword_list

    # 读取停用词
    with open("dict/stop_words.utf8", encoding="utf8") as f:
        stopword_list = f.readlines()

    corpus, labels = get_data()  # 加载数据
    corpus, labels = remove_empty_docs(corpus, labels)
    print("总的数据量:", len(labels))

    # 打印前N个样本
    for i in range(10):
        print("label:", labels[i], " 邮件内容:", corpus[i])

    # 对数据进行划分
    train_corpus, test_corpus, train_labels, test_labels = \
        ms.train_test_split(corpus,
                            labels,
                            test_size=0.10,
                            random_state=36)

    # 规范化处理
    norm_train_corpus = normalize_corpus(train_corpus)
    norm_test_corpus = normalize_corpus(test_corpus)

    # tfidf 特征
    ## 先计算tf-idf
    tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus)
    ## 再用刚刚训练的tf-idf模型计算测试集tf-idf
    tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus)
    # print(tfidf_test_features)
    # print(tfidf_test_features)

    # 基于tfidf的多项式朴素贝叶斯模型
    print("基于tfidf的贝叶斯模型")
    nb_model = MultinomialNB()  # 多分类朴素贝叶斯模型
    nb_model.fit(tfidf_train_features, train_labels)  # 训练
    mnb_pred = nb_model.predict(tfidf_test_features)  # 预测
    print_metrics(true_labels=test_labels, predicted_labels=mnb_pred)  # 打印测试集下的分类指标

    print("")

    # 基于tfidf的支持向量机模型
    print("基于tfidf的支持向量机模型")
    svm_model = SGDClassifier()
    svm_model.fit(tfidf_train_features, train_labels)  # 训练
    svm_pred = svm_model.predict(tfidf_test_features)  # 预测
    print_metrics(true_labels=test_labels, predicted_labels=svm_pred)  # 打印测试集下的分类指标

    print("")

    # 打印测试结果
    num = 0
    for text, label, pred_lbl in zip(test_corpus, test_labels, svm_pred):
        print('真实类别:', label_name_map[int(label)], ' 预测结果:', label_name_map[int(pred_lbl)])
        print('邮件内容【', text.replace("\n", ""), '】')
        print("")

        num += 1
        if num == 10:
            break

执行结果:

基于tfidf的贝叶斯模型
正确率: 0.97, 查准率: 0.97, 召回率: 0.97, F1: 0.97

基于tfidf的支持向量机模型
正确率: 0.98, 查准率: 0.98, 召回率: 0.98, F1: 0.98

真实类别: 正常邮件  预测结果: 正常邮件
邮件内容【 分专业吧,也分导师吧 标  题: Re: 问一个:有人觉得自己博士能混毕业吗 当然很好混毕业了 : 博士读到快中期了,始终感觉什么都不会,文章也没发几篇好的,论文的架构也没有, : 一切跟刚上的时候没有区别。但是事实上我也很辛苦的找资料,做实验,还进公司实习过, : 现在感觉好失败,内心已经放弃了,打算混毕业,不知道过来人有什么高招,请指点一二。 -- 】

真实类别: 垃圾邮件  预测结果: 垃圾邮件
邮件内容【 您好! 我公司有多余的发票可以向外代开!(国税、地税、运输、广告、海关缴款书)。 如果贵公司(厂)有需要请来电洽谈、咨询! 联系电话: 01351025****  陈先生 谢谢 顺祝商祺! 】

……

标签:四阶,Python,0.067,labels,list,idf,全栈,TF,corpus
From: https://blog.csdn.net/sgsgkxkx/article/details/139159472

相关文章

  • python 连接sqlite数据库
     首先要打开右边的Database,点击加号,选择图中的选项。  然后找到下载驱动,因为我的已经下载,就不提示了。在File类型后有三个点选择,找到自己创建的数据库。 之后就可以看到了。 实话来说,python确实比Java写的代码少,而且感觉跟容易理解,实现起来也是很直接。 ......
  • python 一个简单的点餐系统
    importtkinterastkfromtkinterimportmessageboximportsqlite3classRestaurantApp:def__init__(self,master):self.master=masterself.master.title("餐厅点餐系统")#连接到数据库self.connection=sqlite3.connect......
  • 算法金 | 10 大必知的自动化机器学习库(Python)
    大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]一、入门级自动化机器学习库1.1Auto-Sklearn简介:Auto-Sklearn是一个自动机器学习库,基于Python的scikit-learn接口。它主要用于自动化机器学习的常见过程,特别是算法选......
  • Python嵌套_多条件判断
    python嵌套/多条件判断概念在条件语句里,再放条件语句if[条件1]:if[条件2]:[语句A]else:[语句B]else:[语句C]python会根据缩进判断属于哪个条件分支嵌套分支每次加四个空格练习#mood_index是0到100的整数#is_at_home为布尔值mood_index=......
  • 使用Python实现MySQL数据库备份
    数据库备份的重要性数据库备份是一项至关重要的任务,它可以帮助我们应对各种意外情况,如硬件故障、数据损坏、误操作等。通过定期备份数据库,我们可以保证数据的安全性,同时在发生意外时能够快速恢复数据,最大限度地减少业务影响和数据丢失。使用Python实现MySQL数据库备份使......
  • python条件语句
    python条件语句目录python条件语句概念结构结构解释比较运算符实践概念通过判断条件是否满足,来决定执行的内容,就是条件语句的核心。结构if[条件]:[执行语句][执行语句]else:[执行语句][执行语句]结构解释求值出来为布尔值,True,False,作为条件,即把条件赋值为布尔值":......
  • python 直接加载egg 文件的模块
    主要作为一个简单记录参考示例文件模式importsysimportosegg_path=os.path.join(os.path.dirname(__file__),'dist','mydalong-0.1-py3.11.egg')sys.path.append(egg_path)fromdemoimportdalongdalong.login()文件夹模式......
  • python 生成uber egg 的几个工具
    有些时候我们为了方便python模块的分发,会有类似javauberjar的需求,社区已经有一些不错的可选工具,以下说明下uberegg这个工具scrapy-client中的deploy就使用了此工具,对于依赖的构建我们制定配置就可以了pythonsetup.pybdist_uberegg-rrequirements.txtpyassembly也是一......
  • 【华为OD】D卷真题100分:高矮个子排队 python代码实现[思路+代码]
    【华为OD】2024年C、D卷真题集:最新的真题集题库C/C++/Java/python/JavaScript【华为OD】2024年C、D卷真题集:最新的真题集题库C/C++/Java/python/JavaScript-CSDN博客 JS、C、python、Java、C++代码实现:【华为OD】D卷真题100分:高矮个子排队JavaScript代码实现[思路+代码]......
  • 【Python数据预处理系列】精通Pandas:数据清洗中的字符串分割技巧(例子:如何将籍贯列中的
    本文将深入探讨Pandas库在数据清洗中的应用,特别是字符串分割技巧。在数据分析的预处理步骤中,有效地处理和准备原始数据是至关重要的一步。我们将通过具体示例,展示如何使用Pandas中的.str.split()函数来对数据集中的字符串进行分割,进而提取所需信息。本文例子讲解如何将......