首页 > 编程语言 >python用于类型注解的库- typing

python用于类型注解的库- typing

时间:2024-06-05 16:47:41浏览次数:26  
标签:python import UserId int str typing 类型 注解

一、简介

动态语言的灵活性使其在做一些工具,脚本时非常方便,但是同时也给大型项目的开发带来了一些麻烦。

自python3.5开始,PEP484为python引入了类型注解(type hints),虽然在pep3107定义了函数注释(function annotation)的语法,但仍然故意留下了一些未定义的行为.现在已经拥有许多对于静态类型的分析的第三方工具,而pep484引入了一个模块来提供这些工具,同时还规定一些不能使用注释(annoation)的情况

#一个典型的函数注释例子,为参数加上了类型
def greeting(name: str) -> str:
    return 'Hello ' + name

伴随着python3.6的pep526则更进一步引入了对变量类型的声明,和在以前我们只能在注释中对变量的类型进行说明

# 使用注释来标明变量类型
primes = [] # type:list[int]
captain = ... #type:str

class Starship:
    stats = {} #type:Dict[str,int]
primes:List[int] = []
captain:str #Note: no initial value

class Starship:
    stats: ClassVar[Dict[str,int]] = {}

二、typing--对于type hints支持的标准库

typing模块已经被加入标准库的provisional basis中,新的特性可能会增加,如果开发者认为有必要,api也可能会发生改变,即不保证向后兼容性

我们已经在简介中介绍过类型注解,那么除了默认类型的int、str用于类型注解的类型有哪些呢?

typing库便是一个帮助我们实现类型注解的库

类型别名(type alias)

在下面这个例子中,Vector和List[float]可以视为同义词

from typing import List
Vector = List[float]

def scale(scalar: float, vector: Vector)->Vector:
    return [scalar*num for num in vector]

new_vector = scale(2.0, [1.0, -4.2, 5.4])

类型别名有助于简化一些复杂的类型声明

from typing import Dict, Tuple, List

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: List[Server]) -> None:
    ...

# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
        message: str,
        servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
    pass

新类型(New Type)

使用NewType来辅助函数创造不同的类型

form typing import NewType

UserId = NewType("UserId", int)
some_id = UserId(524313)

静态类型检查器将将新类型视为原始类型的子类。这对于帮助捕获逻辑错误非常有用

def get_user_name(user_id: UserId) -> str:
    pass

# typechecks
user_a = get_user_name(UserId(42351))

# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)

你仍然可以使用int类型变量的所有操作来使用UserId类型的变量,但结果返回的都是都是int类型。例如

# output仍然是int类型而不是UserId类型
output = UserId(23413) + UserId(54341)

虽然这无法阻止你使用int类型代替UserId类型,但可以避免你滥用UserId类型

注意,这些检查仅仅被静态检查器强制检查,在运行时Derived = NewType('Derived',base)将派生出一个函数直接返回你传的任何参数,这意味着Derived(some_value)并不会创建任何新类或者创建任何消耗大于普通函数调用消耗的函数

确切地说,这个表达式 some_value is Derived(some_value) 在运行时总是对的。

这也意味着不可能创建派生的子类型,因为它在运行时是一个标识函数,而不是一个实际类型:

from typing import NewType

UserId = NewType('UserId', int)

# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass

然而,它可以创建一个新的类型基于衍生的NewType

from typing import NewType

UserId = NewType('UserId', int)

ProUserId = NewType('ProUserId', UserId)

然后对于ProUserId的类型检查会如预料般工作

Note:回想一下,使用类型别名声明的两个类型是完全一样的,令Doing = Original将会使静态类型检查时把Alias等同于Original,这个结论能够帮助你简化复杂的类型声明

与Alias不同,NewType声明了另一个的子类,令Derived = NewType('Derived', Original)将会使静态类型检查把Derived看做Original的子类,这意味着类型Original不能用于类型Derived,这有助于使用最小的消耗来防止逻辑错误。

回调(callable)

回调函数可以使用类似Callable[[Arg1Type, Arg2Type],ReturnType]的类型注释

例如

from typing import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
    # Body

def async_query(on_success: Callable[[int], None],
                on_error: Callable[[int, Exception], None]) -> None:
    # Body

可以通过对类型提示中的参数列表替换一个文本省略号来声明一个可调用的返回类型,而不指定调用参数,例如 Callable[..., ReturnType]

泛型(Generics)

因为容器中的元素的类型信息由于泛型不同通过一般方式静态推断,因此抽象类被用来拓展表示容器中的元素

from typing import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
                    overrides: Mapping[str, str]) -> None: ... 

可以通过typing中的TypeVar将泛型参数化

from typing import Sequence, TypeVar

T = TypeVar('T')      # 申明类型变量

def first(l: Sequence[T]) -> T:   # Generic function
    return l[0]

用户定义泛型类型

from typing import TypeVar, Generic
from logging import Logger

T = TypeVar('T')

class LoggedVar(Generic[T]):
    def __init__(self, value: T, name: str, logger: Logger) -> None:
        self.name = name
        self.logger = logger
        self.value = value

    def set(self, new: T) -> None:
        self.log('Set ' + repr(self.value))
        self.value = new

    def get(self) -> T:
        self.log('Get ' + repr(self.value))
        return self.value

    def log(self, message: str) -> None:
        self.logger.info('%s: %s', self.name, message)

定义了Generic[T]作为LoggedVar的基类,同时T也作为了方法中的参数。

通过Generic基类使用元类(metaclass)定义__getitem__()使得LoggedVar[t]是有效类型

from typing import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
    for var in vars:
        var.set(0)

泛型可以是任意类型的变量,但也可以被约束

from typing import TypeVar, Generic
...

T = TypeVar('T')
S = TypeVar('S', int, str)

class StrangePair(Generic[T, S]):
    ...

每个类型变量的参数必须是不同的

下面是非法的

from typing import TypeVar, Generic
...

T = TypeVar('T')

class Pair(Generic[T, T]):   # INVALID
    ...

你可以使用Generic实现多继承

from typing import TypeVar, Generic, Sized

T = TypeVar('T')

class LinkedList(Sized, Generic[T]):
    ... 

当继承泛型类时,一些类型变量可以被固定

from typing import TypeVar, Mapping

T = TypeVar('T')

class MyDict(Mapping[str, T]):
    ...

使用泛型类而不指定类型参数则假定每个位置都是Any,。在下面的例子中,myiterable不是泛型但隐式继承Iterable [Any]

from typing import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

还支持用户定义的泛型类型别名。实例:

from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]

# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
    ...

T = TypeVar('T', int, float, complex)
Vec = Iterable[Tuple[T, T]]
#学习中遇到问题没人解答?小编创建了一个Python学习交流群:153708845

def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
    return sum(x*y for x, y in v)

Generic的元类是abc.ABCMeta的子类,泛型类可以是包含抽象方法或属性的ABC类(A generic class can be an ABC by including abstract methods or properties)

同时泛型类也可以含有ABC类的方法而没有元类冲突。

Any

一种特殊的类型是。静态类型检查器将将每个类型视为与任何类型和任何类型兼容,与每个类型兼容。

from typing import Any

a = None    # type: Any
a = []      # OK
a = 2       # OK

s = ''      # type: str
s = a       # OK

def foo(item: Any) -> int:
    # Typechecks; 'item' could be any type,
    # and that type might have a 'bar' method
    item.bar()
    ...

标签:python,import,UserId,int,str,typing,类型,注解
From: https://www.cnblogs.com/python1111/p/18233305

相关文章

  • 七种方法让 Python 代码更容易维护
    随着软件项目进入“维护模式”,对可读性和编码标准的要求很容易落空(甚至从一开始就没有建立过那些标准)。然而,在代码库中保持一致的代码风格和测试标准能够显著减轻维护的压力,也能确保新的开发者能够快速了解项目的情况,同时能更好地全程保持应用程序的质量。使用外部库来检查代码的......
  • python内置函数——sorted
    对List、Dict进行排序,Python提供了两个方法对给定的ListL进行排序,方法1.用List的成员函数sort进行排序,在本地进行排序,不返回副本方法2.用built-in函数sorted进行排序(从2.4开始),返回副本,原始输入不变--------------------------------sorted----------------------------------......
  • Python中os.walk()模块
    语法walk()方法语法格式如下:os.walk(top[,topdown=True[,onerror=None[,followlinks=False]]])参数top--是你所要遍历的目录的地址,返回的是一个三元组(root,dirs,files)。root所指的是当前正在遍历的这个文件夹的本身的地址dirs是一个list,内容是该文件夹中所有......
  • Python:函数
    一、函数介绍函数就是代码片段的封装,实现某一特定功能,当程序中需要执行该功能时,可以通过函数调用方式,执行函数中封装的代码片段函数中三要素函数名必须定义参数(可选)将数据传递函数中使用返回值(可选)将函数中的数据传递外部进行使用二、函数使用2-1语法格式d......
  • python基础学习day2
    python基础1、注释#单行注释'''三单引号注释'''"""三双引号多行注释"""2、数据类型一、整型(int)表示人的年龄、号码等age=18#age=int(18)print(id(age))print(type(age))print(age)二、浮点型(float)表示身高、体重、薪资salary=2.1#sala......
  • 关于python中的抽象类
    关于python中的抽象类本质是:不想让使用者实例化抽象类对于abstractstaticmethod在py3.3中弃用了。 一如何定义一个抽象类1常规做法先importABC继承ABC2用abstractmethod或abstractclassmethod装饰一个方法。二使用说明子类中必须要定义  在基类中被abstrac......
  • Python深度学习实践:自动编码器在数据降维中的应用
    Python深度学习实践:自动编码器在数据降维中的应用1.背景介绍在现代数据科学和机器学习领域中,高维数据处理是一个常见的挑战。许多真实世界的数据集包含大量的特征,这些特征往往存在高度的冗余和噪声。高维数据不仅增加了计算复杂性,还容易导致维数灾难(curseofdimensio......
  • Python并发 :ThreadPoolExecutor
    concurrent.futures是Python中执行异步编程的重要工具,它提供了以下两个类: 1.ThreadPoolExecutorfromconcurrent.futuresimportThreadPoolExecutordeftest(num):print("Threads"num)#新建ThreadPoolExecutor对象并指定最大的线程数量withThreadPoolExecutor(......
  • 日志工具类之“根据标记的注解进行指定的字段日志记录-在展示方式上会美观一些”
    一、使用方法在添加、编辑等操作功能时可以使用该方案,在需要记录日志的实体类字段中进行注解标注。并标明对应的字段名二、代码1.使用LoggerUtils工具类生成日志publicJsonResultsavePrice(Priceprice){if(price.getId()!=null){String......
  • python自动化测试框架,封装方法方式
    第一种:静态方法封装,接口调用入参定义一个(默认json),直接执行接口请求接口封装代码如下:classOrderTransactionService:@staticmethoddefgetComboProductList(body):url=http_host+'/service?serialize=7'headers={'Content-Type':'applic......