首页 > 编程语言 >超简单白话文机器学习 - 回归树&树剪枝(含算法介绍,公式,源代码实现以及调包实现)

超简单白话文机器学习 - 回归树&树剪枝(含算法介绍,公式,源代码实现以及调包实现)

时间:2024-05-26 16:59:45浏览次数:25  
标签:剪枝 clf 调包 dataset np train test 源代码

1. 回归树

1.1 算法介绍

大家看到这篇文章时想必已经对树这个概念已经有基础了,如果不是很了解的朋友可以看看笔者的这篇文章:

超简单白话文机器学习-决策树算法全解(含算法介绍,公式,源代码实现以及调包实现)_白话决策树-CSDN博客

对于回归树的建立,我们一般使用CART回归树,CART(Classification and Regression Trees)回归树是一种用于连续值预测的树模型。它通过递归地分裂数据集,以最小化预测误差为目标,最终生成一棵树结构的模型。

CART回归树的构建核心是选择最佳分裂点通过计算MSE进行衡量。

1. 选择最佳分裂点,对每个特征尝试所有的分裂点,计算分裂后各个数据集的均方误差。

2. 计算分裂前后的总MSE:

其中,n为总样本数,各分子分别是左子节点和右子节点的样本数。

3. 递归分裂,对每个子节点重复上述步骤直到满足停止条件(例如达到最大深度或叶节点中的样本数少于阈值)

获得最佳划分特征之后,需要确定分裂节点的阈值,需要最小化目标函数

1. 首先对于最佳划分特征中的数值进行迭代。

2. 对于该特征特定数值进行分裂的样本进行错误率的计算。

3. 汇总后选择错误率最小的数值作为阈值选择。

2. 树剪枝概述

2.1 预剪枝

2.1.1 算法

预剪枝的核心是在生成决策树的过程中提前停止树的增长。计算当前的划分是否能带来模型泛化能力的提升,如果不能,则不再继续生长子树。

有如下几种方法:

( 1 )当树到达一定深度的时候,停止树的生长。
( 2 )当到达当前结点的样本数量小于某个阈值的时候,停止树的生长。
( 3 )计算每次分裂对测试集的准确度提升,当小于某个阈值的时候 ,不再继续扩展。

2.2 后剪枝

2.2.1 算法

首先我们先讲后剪枝的伪代码用口水话进行呈现:

基于已有的树切分测试数据:

1. 如果存在任一子集是一棵树,则在该子集递归剪枝过程

2. 计算将当前两个叶节点合并后的误差

3. 计算不合并的误差

4. 如果合并可以降低误差,就合并

剪枝策略:

如果剪枝后的叶节点误差小于或等于未剪枝子树的误差,则进行剪枝,即将该内部节点变为叶节点。继续评估和剪枝树中的其他节点,直到不再有可以进一步剪枝的节点。

误差的衡量方式有多种,回归树的误差衡量我们一般选择MSE。

2.2.2 代价复杂度剪枝

前文我们已经讲了,防止过拟合的方法之一时,对决策树进行剪枝,即减少树的分支。 剪枝防止过拟合使得在测试集上的表现更好。

将公式呈现在这里:

让我们用白话文转化一下这个公式:

评价一棵树的得分由两部分组成,第一部分为SSR,一种预测错误率的衡量方式。第二部分代表决策树T的叶子结点个数,阿尔法是自定义指数,需要通过交叉验证的方式得到最佳参数,不同的参数影响最终所生成的树。

举个例子:

对于这四个树我们取得了他们总体的SSR值,假设我们的参数值为1000,计算树的得分。

选取得分最小的树作为我们的预测模型,即第一棵树拥有四个叶子节点。改变参数值会选择不同的预测模型,让我们计算在什么参数值下会分别指向哪一棵树。

在不同参数值的条件下,我们使用测试集迭代进行交叉验证,根据测试集最后的得分我们选择最佳参数作为判断标准,最终构造我们的预测树模型。

3. 手写代码实现

3.1 回归树

def regLeaf(dataset):
    return np.mean(dataset[:,-1]) #得到叶结点,目标变量的均值
    
def regErr(dataset):
    return np.var(dataset[:,-1]) * np.shape(dataset)[0] #返回的是总方差

def chooseBestSplit(dataset,leafType=regLeaf,errType=regErr,ops=(1,4)):
    tols = ops[0];tolN = ops[1] #tols是容许的误差下降值, yolN是切分的最少样本数
    if len(set(dataset[:,-1].T.tolist()[0])) == 1: #如果剩余特征为1
        return None,leafType(dataset) #直接返回叶子结点
    m,n = np.shape(dataset)
    S = errType(dataset) #数据集的总误差
    bestS = 100000; bestIndex=0;bestvalue = 0
    for featIndex in range(n-1):
        for splitVal in set(dataset[:,featIndex]): #对于某特征不同值的集合进行迭代
            mat0,mat1 = binSplitDataset(dataset,feat,splitVal)
            if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN): continue #如果不满足最少切分样本树
            newS = errType(mat0) + errorType(mat1) #返回数据集的总方差
            if newS < bestS: #选择总方差最少的数据分类方式
                bestIndex = feat
                bestvalue = splitVal
                bestS = newS
    if (S - bestS) < tols: #如果小于要求的误差下降值,则直接返回叶子结点
        return None,leafType(dataset)
    mat0,mat1 = binSplitDataset(dataset,bestIndex,bestvalue)
    if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN):
        return None, leafType(dataset)
    return bestIndex,bestValue

4. 调包实现

4.1 预剪枝

import numpy as np
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_iris()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 设置预剪枝条件
max_depth = 3  # 限制树的最大深度
min_samples_split = 4  # 分裂一个内部节点所需的最小样本数
min_samples_leaf = 2  # 叶节点所需的最小样本数

# 初始化并训练决策树分类器
clf = DecisionTreeClassifier(random_state=42, 
                             max_depth=max_depth, 
                             min_samples_split=min_samples_split, 
                             min_samples_leaf=min_samples_leaf)

clf.fit(X_train, y_train)

# 预测并评估模型性能
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

print(f'预剪枝条件下的决策树分类器准确率: {accuracy:.4f}')

# 可视化决策树(需要graphviz支持)
from sklearn.tree import export_graphviz
import graphviz

dot_data = export_graphviz(clf, out_file=None, 
                           feature_names=data.feature_names,  
                           class_names=data.target_names,  
                           filled=True, rounded=True,  
                           special_characters=True)  
graph = graphviz.Source(dot_data)  
graph.render("iris_prepruned_tree")  # 将树保存为PDF文件
graph  # 在Jupyter Notebook中显示决策树

4.2 后剪枝

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, cross_val_score
import matplotlib.pyplot as plt

# 示例数据集
X = np.array([[2.7, 2.5], [1.3, 1.5], [3.2, 2.8], [3.8, 2.5], [2.9, 2.4],
              [6.5, 3.1], [7.1, 3.4], [6.0, 2.9], [7.6, 3.2], [6.3, 3.0]])
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 生成完整的决策树
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)

# 获取剪枝路径
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

# 遍历不同的剪枝参数,选择最佳剪枝
clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(random_state=42, ccp_alpha=ccp_alpha)
    clf.fit(X_train, y_train)
    clfs.append(clf)

# 交叉验证选择最佳剪枝参数
alpha_scores = [cross_val_score(clf, X_train, y_train, cv=2).mean() for clf in clfs]
best_clf = clfs[np.argmax(alpha_scores)]

# 在测试集上评估最佳模型
test_score = best_clf.score(X_test, y_test)
print(f'Best alpha: {ccp_alphas[np.argmax(alpha_scores)]}')
print(f'Test set score: {test_score}')

# 可视化剪枝路径
plt.figure(figsize=(10, 6))
plt.plot(ccp_alphas, alpha_scores, marker='o', drawstyle='steps-post')
plt.xlabel('Alpha')
plt.ylabel('Cross-validated accuracy')
plt.title('Alpha vs Cross-validated accuracy')
plt.show()

5. 剪枝的优点与局限性

5.1 预剪枝

5.1.1 优点

提高可解释性:便于理解。

减少计算复杂度:在构建树的过程中提前停止分裂,减少模型训练时间和计算资源的消耗。

防止过拟合:限制树的复杂度,提高模型的泛化能力。

5.1.2 局限性

次优决策:在树构建过程中基于局部信息作出决策,可能忽略了更深层次的潜在有用分裂。

信息丢失:某些潜在的重要特征和信息可能未能充分利用,导致模型的表达能力有限。

难以处理复杂模式:简单树结构可能无法捕捉复杂的决策边界,从而影响分类或回归的精度。

5.2 后剪枝

5.2.1 优点

后剪枝比预剪枝保留了更多的分支, 欠拟合风险小 , 泛化性能往往优于预剪枝决策树

5.2.2 局限性

训练时间开销大 :后剪枝过程是在生成完全决策树 之后进行的,需要自底向上对所有非叶结点逐一计算

6. 应用前景

1. 医疗保健:

-疾病预测:回归树用于疾病的发生概率,基于病患的历史数据和体检报告进行精准预测

-治疗效果评测:预测不同治疗方案的效果,帮助医生制定个性化的治疗计划

2. 环境科学:

-气象预测:用于预测天气变化趋势,例如温度,降水量等

-环境监测:监测和预测空气质量,水质等环境指标

...

6. 参考资料

https://www.cnblogs.com/wuliytTaotao/p/10724118.html

机器学习-预剪枝和后剪枝-CSDN博客

回归树剪枝:代价复杂度剪枝

标签:剪枝,clf,调包,dataset,np,train,test,源代码
From: https://blog.csdn.net/qq_51222843/article/details/139125581

相关文章

  • 源代码管理工具介绍
    源代码管理工具介绍当谈到主流的源代码管理工具时,通常会提到GitHub、GitLab、Bitbucket、Mercurial和Subversion。这些工具在团队协作和代码版本管理方面发挥着重要作用。我会首先提一些源代码管理工具,然后详细介绍GitHub,最后探讨如何将GitHub与贪吃蛇学英语的团队项目相结合。G......
  • 源代码管理工具——Github
    一.工具介绍1.我的理解GitHub他就是一个远程仓库,远程仓库通俗的理解就是一个可以保存自己代码的地方,在实际开发当中一个项目往往是有多个人来共同协作开发完成的,那么就需要一个统一代码保存的地方,而GitHub就是起到一个共享和汇总代码的作用。2.github登录与注册官方登录页:ht......
  • 在奖学金管理系统项目中使用 GitHub 管理源代码
    1.GitHub管理代码的基本步骤GitHub是一个基于Git的代码托管平台,提供了版本控制和协作开发的功能。以下是使用GitHub管理代码的基本步骤:注册和创建存储库:注册一个GitHub账号。创建一个新的存储库(Repository):登录GitHub,点击右上角的“+”号,选择“Newreposi......
  • 主流源代码管理工具Github介绍
    1.github简介GitHub是一个基于Git的代码托管平台,是全球最大的开源社区之一,由于其方便易用的特点,受到广大程序员的青睐。使用GitHub,你可以将自己的代码托管在云端,并且可以与其他人协作开发。GitHub他就是一个远程仓库,远程仓库通俗的理解就是一个可以保存自己代码的地方,在实际开发......
  • 源代码管理工具简明宣介——Team Foundation Server(TFS)
    TeamFoundationServer(TFS)是一款由Microsoft提供的强大的源代码管理工具,它为软件开发团队提供了一个全面的应用生命周期管理平台。一、核心功能源代码管理:TFS支持集中式和分布式版本控制系统,包括TFVC(TeamFoundationVersionControl)和Git。这使得团队能够灵活选择最适合其项......
  • GitHub——源代码管理工具
    一、简介GitHub是一个面向开源及私有软件项目的托管平台,因为只支持Git作为唯一的版本库格式进行托管,故名GitHub。GitHub提供了分布式版本控制和源代码管理(SCM)功能,它是基于Git的,由GitHub公司开发和维护。它不仅提供了代码托管服务,还提供了一个平台,让开发者可以交流、学习和协作。......
  • 企业源代码泄露?这几招教你如何避免这场灾难
    网络时代下的企业机密:如何防范源代码泄露风险在数字化的网络时代,企业机密尤其是源代码的安全保护,已成为软件开发企业关注的焦点。源代码不仅是企业的核心竞争力,更是创新成果的体现。一旦源代码泄露,不仅会造成巨大的经济损失,还会使企业在激烈的市场竞争中处于不利地位。因此,如何有......
  • 源代码安全:华企盾DSC防泄密系统在软件开发企业中的应用
    在软件开发行业中,源代码的安全是企业最宝贵的资产之一。源代码的泄露不仅会导致企业损失巨大的经济利益,还可能危及到企业的市场竞争力。因此,保护源代码的安全成为了软件开发企业的重要任务。华企盾DSC系统作为一套先进的数据安全防泄密解决方案,在保障源代码安全方面发挥着至关重要......
  • 介绍主流源代码管理工具
    在选择源代码管理工具时,GitHub是一个非常受欢迎和推荐的平台。GitHub不仅是最大的源代码存储和版本控制服务,而且对开源项目是免费的。它基于Git,这是一种专为分布式版本控制和协作而设计的流行开源工具。GitHub提供了代码托管、版本控制、团队协作、项目管理等一系列功能,这些功能帮......
  • 主流源代码管理工具GitHub介绍
    GitHub在软件开发领域,源代码管理工具的重要性不言而喻。它们不仅帮助开发者跟踪代码变更,还促进了团队协作,使得项目管理和版本控制变得更加高效。在众多源代码管理工具中,GitHub以其独特的优势,成为了众多开发者和团队的首选。1.引言源代码管理工具是软件开发中不可或缺的一部分......