概述
ArrayList 是 List 接口的一个实现类,也是 Java 中最常用的容器实现类之一,可以把它理解为「可变数组」。
Java 中的数组初始化时需要指定长度,而且指定后不能改变。ArrayList 内部也是一个数组,它对数组的功能做了增强:主要是在容器内元素增加时可以动态扩容,这也是 ArrayList 的核心所在。
ArrayList是一个动态数组,他不是线程安全的,允许存储null元素,它的底层数据结构依然是数组,ArrayList是List接口的大小可变数组的实现;ArrayList允许null元素;ArrayList的容量可以自动增长;ArrayList不是同步的;ArrayList的iterator和listIterator方法返回的迭代器是fail-fast的。
因其底层数据结构是数组,所以可想而知,它是占据一块连续的内存空间(容量就是数组的length),所以它也有数组的缺点,空间效率不高。
由于数组的内存连续,可以根据下标以O1的时间读写(改查)元素,因此时间效率很高。
当集合中的元素超出这个容量,便会进行扩容操作。扩容操作也是ArrayList 的一个性能消耗比较大的地方,所以若我们可以提前预知数据的规模,应该通过public ArrayList(int initialCapacity) {}构造方法,指定集合的大小,去构建ArrayList实例,以减少扩容次数,提高效率。
ArrayList 的继承结构如下:
代码分析
构造器
先从构造器着手进行分析。ArrayList 有三个构造器,分别为:
- 无参构造器
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
该构造器涉及两个变量:elementData 和 DEFAULTCAPACITY_EMPTY_ELEMENTDATA。这两个变量的定义如下:
transient Object[] elementData; // non-private to simplify nested class access
可以看到 elementData 是一个 Object 类型的数组,该数组也是 ArrayList 作为容器用于存储数据的地方。
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
DEFAULTCAPACITY_EMPTY_ELEMENTDATA 是一个 Object 类型的空数组。因此,该无参构造器的作用就是将 elementData 初始化为一个 Object 类型的空数组。
- 指定初始化容量的构造器
该构造传入一个参数,即初始化内部数组容量的 initialCapacity,如下:
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
该构造器根据传入的初始容量(initialCapacity)初始化用于存储元素的数组 elementData 变量。当初始容量为 0 时,elementData 被初始化为 EMPTY_ELEMENTDATA,该变量如下:
private static final Object[] EMPTY_ELEMENTDATA = {};
该数组与 DEFAULTCAPACITY_EMPTY_ELEMENTDATA 都是一个空的 Object 数组,二者名字不同是为了区分 ArrayList 初始化时是否指定了容量,后期进行扩容的时候有所不同。
- 指定初始化集合的构造器
该构造器传入一个集合 Collection,即使用 Collection 中的元素初始化 ArrayList 对象,代码如下:
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
注意:这里若 Collection 为空时会抛出 NPE,因此初始化前有必要判空。
boolean add(E e)
// ArrayList 的大小(包含元素的个数)
private int size;
// 将指定的元素添加到 List 末尾
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
可以看到,在 add() 方法执行时,会首先执行 ensureCapacityInternal() 方法:
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
该方法会先通过 calculateCapacity 方法计算数组需要的容量 minCapacity,然后判断是否需要执行 grow() 方法:
// 默认初始化容量
private static final int DEFAULT_CAPACITY = 10;
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 这里只会在使用无参构造器初始化,并且第一次使用 add 方法时执行(将容量初始化为 10)
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
这里可以看到,若 elementData 初始值为 DEFAULTCAPACITY_EMPTY_ELEMENTDATA,即使用无参构造器初始化 ArrayList,则默认初始化容量为 10.
若所需容量大小 minCapacity 比原数组长度大(即原数组长度不够用了),则执行 grow() 方法(对数组进行扩容):
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
新容量大小计算:
int newCapacity = oldCapacity + (oldCapacity >> 1);
由此可以看出,新容量为原容量的 1.5 倍;若扩容为 1.5 倍后,仍未达到所需容量,则直接使用所需要的容量。
如何扩容的呢?使用 Arrays.copyOf() 方法创建了一个新的数组,然后将原先数组的元素拷贝到新的数组中:
elementData = Arrays.copyOf(elementData, newCapacity);
跟踪该方法可以发现,最终调用了 System.arraycopy() 方法:
public static native void arraycopy(Object src, int srcPos, Object dest, int destPos, int length);
void add(int index, E element)
public void add(int index, E element) {
// 判断index是否越界
rangeCheckForAdd(index);
// 扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
//public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)
//src:源数组; srcPos:源数组要复制的起始位置; dest:目的数组; destPos:目的数组放置的起始位置; length:复制的长度
// 将elementData从index位置开始,复制到elementData的index+1开始的连续空间
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 在elementData的index位置赋值element
elementData[index] = element;
// ArrayList的大小加一
size++;
}
判断index是否越界,0<=index<=size。
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
ensureCapacityInternal(size + 1) 扩容,同 add 方法。
然后数组元素从index位置右移:
System.arraycopy(elementData, index, elementData, index + 1,size - index);
举例:在索引2处添加元素e,大概过程如下:
E remove(int index)
public E remove(int index) {
// 判断是否越界
rangeCheck(index);
modCount++;
// 读取旧值
E oldValue = elementData(index);
// 获取index位置开始到最后一个位置的个数
int numMoved = size - index - 1;
if (numMoved > 0)
// 将elementData数组index+1位置开始拷贝到elementData从index开始的空间
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
// 使size-1 ,设置elementData的size位置为空,让GC来清理内存空间
elementData[--size] = null; //便于垃圾回收器回收
return oldValue;
}
判断index是否越界,index<size
private void rangeCheck(int index) {
// 如果下标超过ArrayList的数组长度
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
获取删除对象
E oldValue = elementData(index);
获取删除对象右侧元素个数(整体左移)
int numMoved = size - index - 1;
如果存在移动元素,拷贝覆盖源数组
System.arraycopy(elementData, index + 1, elementData, index, numMoved);
使size-1 ,设置elementData的size位置为空,让GC来清理内存空间
elementData[--size] = null;
返回删除对象
boolean remove(Object o)
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
整体逻辑比较简单,遍历数组找到索引位置,然后调用 fastRemove 方法删除元素
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
// 使size-1 ,设置elementData的size位置为空,让GC来清理内存空间
elementData[--size] = null; //便于垃圾回收器回收
}
快速删除指定位置的值,可能是因为内部使用,且不包含索引越界校验。删除逻辑同 remove 方法
void removeRange(int fromIndex, int toIndex)
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;//后段保留的长度
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
//便于垃圾回收期回收
int newSize = size - (toIndex - fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
获取后段保留长度
int numMoved = size - toIndex;
截取源数组后段元素,从开始索引位置覆盖
System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved);
获取数组最新长度,将大于最新长度的元素置为null,让GC来清理内存空间
int newSize = size - (toIndex - fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
设置元素长度
size = newSize;
boolean retainAll(Collection<?> c)
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
// 调用batchRemove保留c中的元素
return batchRemove(c, true);
}
保留集合c中的元素,也就是取两集合交集,核心方法 batchRemove
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
// 定义一个w,一个r,两个同时右移
int r = 0, w = 0;
boolean modified = false;
try {
// r先右移
for (; r < size; r++)
// 如果c中不包含elementData[r]这个元素
if (c.contains(elementData[r]) == complement)
// 则直接将r位置的元素赋值给w位置的元素,w自增
elementData[w++] = elementData[r];
} finally {
// 防止抛出异常导致上面r的右移过程没完成
if (r != size) {
// 将r未右移完成的位置的元素赋值给w右边位置的元素
System.arraycopy(elementData, r,
elementData, w,
size - r);
// 修改w值增加size-r
w += size - r;
}
// 如果有被覆盖掉的元素,则将w后面的元素都赋值为null
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;//改变的次数
//新的大小为保留的元素的个数
size = w;
modified = true;
}
}
return modified;
}
r 为遍历索引,w为覆盖数组索引,complement为 true 合集 false 差集
for (; r < size; r++)
// 如果c中不包含elementData[r]这个元素
if (c.contains(elementData[r]) == complement)
// 则直接将r位置的元素赋值给w位置的元素,w自增
elementData[w++] = elementData[r];
遍历数组,交集、差集覆盖
if (r != size) {
// 将r未右移完成的位置的元素赋值给w右边位置的元素
System.arraycopy(elementData, r,
elementData, w,
size - r);
// 修改w值增加size-r
w += size - r;
}
如果r != size表示遍历流程出现异常,将r右侧数据覆盖到w的右侧位置,修改w值,即数组最新长度
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;//改变的次数
//新的大小为保留的元素的个数
size = w;
modified = true;
}
如果w != size表示存在覆盖掉的元素,将w右侧数据置为null,GC回收
线程安全性
线程安全可以简单理解为:多个线程同时操作一个方法或变量时,不会出现问题;若出现问题,可认为是线程不安全的。
ArrayList 是线程不安全的,主要体现有二:
- 多个线程往 ArrayList 添加数据时(扩容时),可能会产生数组越界异常(ArrayIndexOutOfBoundsException)
- 多个线程遍历同一个 ArrayList,有线程对其进行修改时,可能会抛出 ConcurrentModificationException
先对 add() 方法进行分析:
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
注意:i++ 操作是非原子性的。
场景分析一
若有一个初始容量为 1 的 ArrayList,线程 T1 和 T2 同时向其中添加元素(add() 方法),当添加第 2 个元素时,需要进行扩容。
此时若有以下执行时序:
- T1、T2 检测到需要扩容
此时,T1 和 T2 拿到的都是 elementData.length=1, size=1,若 T1 先执行 ensureCapacityInternal() 方法扩容,则 elementData.length=2, size=1;之后 T2 再执行 ensureCapacityInternal() 方法时,因为初始 size=1,而 T1 扩容后 elementData.length=2,所以 T2 不会再进行扩容(不再执行 grow() 方法) - T1 执行赋值操作和 size++ 操作
之后 T1 执行赋值操作 elementData[1]=XX 和 size++,size 自增为 2 - T2 执行赋值操作(数组越界)和 size++ 操作
由于上一步 T1 执行了 size++ 操作,当前 size=2,这时的赋值 elementData[size++] 将对 elementData[2] 执行赋值操作,而 elementData.length=2,最大下标为 1,这时会发生数组越界异常(ArrayIndexOutOfBoundsException)
场景分析二
有一个 ArrayList,线程 T1 对其进行遍历;线程 T2 对其遍历,并移除部分元素。
对 ArrayList 进行遍历时,以 iterator 方法为例,其代码如下:
public Iterator<E> iterator() {
return new Itr();
}
会创建一个内部类 Itr,如下:
private class Itr implements Iterator<E> {
int expectedModCount = modCount;
// ...
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
// 检查是否有其他线程进行结构性修改
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
而 ArrayList 的 add()、remove() 等结构性修改的操作都会使 modCount++。因此有:若线程 T1 只对 ArrayList 进行遍历;而线程 T2 对同一个 ArrayList 进行了移除元素操作,则会修改 modCount 的值,导致线程 T1 中 modCount != expectedModCount,从而触发 ConcurrentModificationException
总结
- ArrayList 可以理解为「可以自动扩容的数组」,默认初始化容量为 10,默认每次扩容为原容量的 1.5 倍
- ArrayList 的插入或删除都是依赖系统本地方法 System.arraycopy 完成
- ArrayList 线程不安全,不适合在多线程场景下使用
参考文章:
- https://zhuanlan.zhihu.com/p/104063640
- https://blog.csdn.net/weixin_42039228/article/details/123067489