首页 > 编程语言 >Python中itertools 模块的用法

Python中itertools 模块的用法

时间:2024-04-17 16:11:21浏览次数:32  
标签:迭代 Python list itertools 模块 print import iterable

在 Python 中,迭代器是一种非常好用的数据结构,其最大的优势就是延迟生成,按需使用,从而大大提高程序的运行效率。而 itertools 作为 Python 的内置模块,就为我们提供了一套非常有用的用于操作可迭代对象的函数。

常用功能

1.count 功能详解

count(start=0,step=1) 函数有两个参数,其中 step 是默认参数,可选的,默认值为 1。 该函数返回一个新的迭代器,从 start 开始,返回以 step 为步长的均匀间隔的值。

import itertools
x = itertools.count(1,2)
for k in x:
	print(k, end=", ")

# 输出结果如下 无穷无尽
1, 3, 5, 7, 9, 11, 13, 15, ...

2.cycle 功能详解

cycle(iterable) 该函数会把接收到的序列无限重复下去。

import itertools
x = itertools.cycle("XYZ")
for k in x:
	print(k, end = ", ")
  
# 输出结果如下 无穷无尽
X, Y, Z, X, Y, Z, X, Y, Z, ...

注意,该函数可能需要相当大的辅助空间(取决于 iterable 的长度)。

3.repeat 功能详解

repeat(object, times) 该函数创建一个迭代器,不断的重复 object,当然如果指定 times 的话,则只会重复 times 次。

import itertools
x = itertools.repeat("XYZ")
for k in x:
	print(k, end = ", ")
  
# 输出结果如下 无穷无尽
XYZ, XYZ, XYZ, XYZ, XYZ, XYZ, ...
import itertools
x = itertools.repeat("XYZ", 3)
print(list(x))
#学习中遇到问题没人解答?小编创建了一个Python学习交流群:153708845
# 输出结果如下 只会输出三次
['XYZ', 'XYZ', 'XYZ']

注意:无限循环迭代器只有在 for 循环中才会不断的生成元素,如果只是创建一个迭代器对象,则不会事先生成无限个元素。

4.chain 功能详解

chain(*iterables) 该函数创建一个新的迭代器,会将参数中的所有迭代器全包含进去。

import itertools
x = itertools.chain("abc", "xyz")
print(list(x))

# 输出结果如下
['a', 'b', 'c', 'x', 'y', 'z']

5.groupby 功能详解

groupby(iterable, key=None) 分组函数,将 key 函数作用于序列的各个元素。根据 key 函数的返回值将拥有相同返回值的元素分到一个新的迭代器。类似于 SQL 中的 GROUP BY 操作,唯一不同的是该函数对序列的顺序有要求,因为当 key 函数的返回值改变时,迭代器就会生成一个新的分组。因此在使用该函数之前需要先使用同一个排序函数对该序列进行排序操作。

import itertools
def sortBy(score):
	if score > 80:
		return "A"
	elif score >= 60:
		return "B"
	else:
		return "C"

scores = [81, 82, 84, 76, 64, 78, 59, 44, 55, 89]
for m, n in itertools.groupby(scores, key=sortBy):
	print(m, list(n))

# 输出结果如下
A [81, 82, 84]
B [76, 64, 78]
C [59, 44, 55]
A [89]

我们可以看到,该函数根据我们自定义的排序函数 sortBy 将列表中的元素进行了分组操作,只是我们发现最后一个怎么多了一个 A 的分组呢,这就是我们上面说所得「当 key 函数的返回值改变时,迭代器就会生成一个新的分组」。所以,我们需要事先对列表用 sortBy 函数排一下序。

scores = [81, 82, 84, 76, 64, 78, 59, 44, 55, 89]
scores = sorted(scores, key=sortBy)
for m, n in itertools.groupby(scores, key=sortBy):
	print(m, list(n))

# 输出结果如下
A [81, 82, 84]
B [76, 64, 78]
C [59, 44, 55]
A [89]

6.compress 功能详解

compress(data, selectors) 该函数功能很简单,就是根据 selectors 中的值判断是否保留 data 中对应位置的值。

import itertools
data = [81, 82, 84, 76, 64, 78]
tf = [1,1,0,1,1,0]
print(list(itertools.compress(data, tf)))

# 输出结果如下
[81, 82, 76, 64]

7.dropwhile 功能详解

dropwhile(predicate, iterable) 创建一个迭代器,从 predicate 首次为 false 时开始迭代元素。

import itertools
x = itertools.dropwhile(lambda x: x < 5, [1,3,5,7,4,2,1])
print(list(x))

# 输出结果如下
[5, 7, 4, 2, 1]

由以上得知,即使 predicate 首次为 false 后面的元素不满足 predicate 也同样会被迭代。

8.filterfalse 功能详解

filterfalse(predicate, iterable) 创建一个迭代器,返回 iterable 中 predicate 为 false 的元素。

import itertools
x = itertools.filterfalse(lambda x: x < 5, [1,3,5,7,4,2,1])
print(list(x))

# 输出结果如下
[5, 7]

9.islice 功能详解

islice(iterable, start, stop[, step]) 对 iterable 进行切片操作。从 start 开始到 stop 截止,同时支持以步长为 step 的跳跃。

import itertools
print(list(itertools.islice('123456789', 2)))
print(list(itertools.islice('123456789', 2, 4)))
print(list(itertools.islice('123456789', 2, None)))
print(list(itertools.islice('123456789', 0, None, 2)))

# 输出结果如下
['1', '2']
['3', '4']
['3', '4', '5', '6', '7', '8', '9']
['1', '3', '5', '7', '9']

10.starmap 功能详解

starmap(function, iterable) 从可迭代对象中获取参数来执行该函数。

import itertools
print(list(itertools.starmap(pow,[(2,10), (3,3)])))

# 输出结果如下
[1024, 27]

11.takewhile 功能详解

takewhile(predicate, iterable) 创建一个迭代器,遇到 predicate 为 false 则停止迭代元素。与 dropwhile 完全相反。

import itertools
x = itertools.takewhile(lambda x: x < 5, [1,3,5,7,4,2,1])
print(list(x))

# 输出结果如下
[1, 3]

12.product 功能详解

product(*iterables, repeat=1) 输出可迭代对象的笛卡尔积,有点类似于嵌套循环。其中 repeat 可以设置循环次数。

import itertools
print(list(itertools.product("ab", "12")))
print(list(itertools.product("ab", "ab")))
print(list(itertools.product("ab", repeat=2)))

# 输出结果如下
[('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]
[('a', 'a'), ('a', 'b'), ('b', 'a'), ('b', 'b')]
[('a', 'a'), ('a', 'b'), ('b', 'a'), ('b', 'b')]

13.permutations 功能详解

permutations(iterable, r=None) 返回 iterable 中长度为 r 的所有排列。默认值 r 为 iterable 的长度。即使元素的值相同,不同位置的元素也被认为是不同的。

import itertools
print(list(itertools.permutations("aba", r=2)))

# 输出结果如下
[('a', 'b'), ('a', 'a'), ('b', 'a'), ('b', 'a'), ('a', 'a'), ('a', 'b')]

14.combinations 功能详解

combinations(iterable, r=None) 返回 iterable 中长度为 r 的有序排列。默认值 r 为 iterable 的长度。 与 permutations 操作不同的是该函数严格按照 iterable 中元素的顺序进行排列。

import itertools
print(list(itertools.combinations("abc", r=2)))

# 输出结果如下
[('a', 'b'), ('a', 'c'), ('b', 'c')]

15.combinations_with_replacement 功能详解

combinations_with_replacement(iterable, r=None) 返回 iterable 中长度为 r 的有序排列。默认值 r 为 iterable 的长度。 与 combinations 操作不同的是该函数允许每个元素重复出现。

import itertools
print(list(itertools.combinations_with_replacement("abc", r=2)))
#学习中遇到问题没人解答?小编创建了一个Python学习交流群:153708845
# 输出结果如下
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]

itertools 总结

本文总结了 itertools 模块的常规操作,学习并掌握这些极为便利的操作非常有助于提高自己的编码效率。

标签:迭代,Python,list,itertools,模块,print,import,iterable
From: https://www.cnblogs.com/python1111/p/18141004

相关文章

  • Python中容易被忽略的内置类型
    Python中的内置类型是我们开发中最常见的,很多人都能熟练的使用它们。然而有一些内置类型确实不那么常见的,或者说往往会被我们忽略,所以这次的主题就是带领大家重新认识这些“不同寻常”的内置类型。1.frozenset不可变集合(frozenset)与普通的set一样,只不过它的元素是不可变的,因此......
  • Python读取和生成excel文件
    在Python中,你可以使用第三方库来读取和生成Excel文件。其中,最常用的库是pandas/openpyxl和xlwt/xlrd。Pandas安装Pandas库:pipinstallpandas要读取Excel文件,你可以使用pandas的read_excel函数。下面是一个示例代码,演示了如何使用pandas读取Excel文件中的数据:importpan......
  • Python科学计算基础教程 ([印] Hemant Kumar Mehta 著;陶俊杰, 陈小莉 译)
    电子版获取:2huo点vip我的读书笔记:NumPy和SciPy:介绍使用NumPy进行数组操作和SciPy进行科学计算的基础知识。数据可视化:使用Matplotlib、Seaborn或其他库创建图表和可视化。数据处理和清洗:使用Pandas进行数据操作、清洗和分析。机器学习和深度学习:使用Scikit-learn、Tens......
  • Python量化交易系统实战--设计交易策略:择时策略
     作者:麦克煎蛋  出处:https://www.cnblogs.com/mazhiyong/转载请保留这段声明,谢谢! 一、双均线策略1、什么是均线2、双均线策略  3、生成交易信号简单的根据金叉和死叉生成交易信号:defma_strategy(data,short_window=5,long_window=20):"""双均线策......
  • Python-数字取证秘籍(三)
    Python数字取证秘籍(三)原文:zh.annas-archive.org/md5/941c711b36df2129e5f7d215d3712f03译者:飞龙协议:CCBY-NC-SA4.0第六章:阅读电子邮件和获取名称的配方本章涵盖了以下配方:解析EML文件查看MSG文件订购外卖盒子里有什么?解析PST和OST邮箱介绍一......
  • Python-并行编程秘籍(五)
    Python并行编程秘籍(五)原文:zh.annas-archive.org/md5/e472b7edae31215ac8e4e5f1e5748012译者:飞龙协议:CCBY-NC-SA4.0第九章:调试阶段这最后一章将介绍两个重要的软件工程主题——调试和测试,这是软件开发过程中的重要步骤。本章的第一部分专注于代码调试。错误是程序中的错......
  • Python-并行编程秘籍(一)
    Python并行编程秘籍(一)原文:zh.annas-archive.org/md5/e472b7edae31215ac8e4e5f1e5748012译者:飞龙协议:CCBY-NC-SA4.0前言计算行业的特点是寻求越来越高效的性能,从网络、电信、航空电子等领域的高端应用到台式计算机、笔记本电脑和视频游戏中的低功耗嵌入式系统。这种发展......
  • Python-编程蓝图(五)
    Python编程蓝图(五)原文:zh.annas-archive.org/md5/86404db5905a76ae5db4e50dd816784e译者:飞龙协议:CCBY-NC-SA4.0第八章:订单微服务在本章中,我们将扩展我们在第七章中实现的Web应用程序,使用Django创建在线视频游戏商店。我不知道您是否注意到,在该项目中有一些重要的东西......
  • Python-编程蓝图(四)
    Python编程蓝图(四)原文:zh.annas-archive.org/md5/86404db5905a76ae5db4e50dd816784e译者:飞龙协议:CCBY-NC-SA4.0第七章:使用Django创建在线视频游戏商店我出生在70年代末,这意味着我在视频游戏产业诞生时长大。我的第一款视频游戏主机是Atari2600,正是因为这款特定的视......
  • Python-编程蓝图(六)
    Python编程蓝图(六)原文:zh.annas-archive.org/md5/86404db5905a76ae5db4e50dd816784e译者:飞龙协议:CCBY-NC-SA4.0第九章:通知无服务器应用程序在本章中,我们将探索AWSLambda函数和AWSAPIGateway。AWSLambda使我们能够创建无服务器函数。无服务器并不意味着没有服务器......