首页 > 编程语言 >算法模板 v1.12.2.20240411

算法模板 v1.12.2.20240411

时间:2024-04-11 11:12:18浏览次数:43  
标签:2.20240411 node return cur val int void v1.12 模板

算法模板

v1.1.1.20240115:之前历史版本已不可寻,创建第一份算法模板。

v1.2.1.20240116:删除“编译”-“手动开栈”;删除“编译”-“手动开O优化”;修改“编译”-“CF模板”;删除“读写”;删除“图论”-“欧拉图”-“混合图”;删除“图论”-“可达性统计”;删除“数据类型”-“高精类”。

v1.3.1.20240120:恢复"读写"-"EMIO";删除“读写”-“EMIO”,代码转移至读写。

v1.3.2.20240124:修改“数据结构”-“并查集”;创建[toc]目录。

v1.4.1.20240128:创建“字符串”-“Z函数”。

v1.4.2.20240129:删除"编译"-"CF模板",代码转移至“编译”。

v1.5.1.20240130:创建"字符串"-"字典树"-”Trie“;创建"字符串"-"字典树"-”可持久化01Trie“;创建”随机化“-”模拟退火“。

v1.6.1.20240131:创建"图论"-”三元环计数“;修改”数据类型“-”大数类“。

v1.7.1.20240228:创建“表达式”-“获取优先级”;创建"表达式"-“中缀转后缀”;创建”表达式“-”建立表达式树“;修改“版本更新说明”。

v1.8.1.20240229:创建"字符串"-“Split”。

v1.9.1.20240303:创建"树论"-“K级祖先”。

v1.10.1.20240319:创建"枚举"-“排列”-“全排列”;创建"枚举"-“子集”-“枚举全部子集”;创建"枚举"-“子集”-“枚举k大小子集”。

v1.10.2.20240320:修改"数据结构"-“李超线段树”。

v1.10.3.20240323:修改“图论”-“网络流”-“最大流”-“Dinic”。

v1.10.4.20240325:修改"数据结构"-“可删堆”。

v1.10.5.20240330:修改"图论"-"网络流"-“最大流”-“Dinic”;修改"图论"-"网络流"-“费用流”-“ZKW费用流”。

v1.11.1.20240330:创建"图论"-“网络流”-“最大流”-“Dinic最后反悔”。

v1.11.2.20240401:修改"图论"-“存储”;创建“数据结构”-“动态开点权值线段树”。

v1.12.1.20240409:创建“字符串”-“Hash”-“单Hash”;创建“字符串”-“Hash”-“双Hash”;创建”数学“-”随机数生成器“。

v1.12.2.20240411:修改“树论”-“K级祖先”。

目录

编译

#include<bits/stdc++.h>
using namespace std;
/*====================*/
#define endl "\n"
/*====================*/
typedef long long lnt;
/*====================*/
void Solve(void)
{

}
/*====================*/
int main()
{
#ifndef ONLINE_JUDGE
	freopen("IN.txt", "r+", stdin);
#endif
	ios::sync_with_stdio(false);
	cin.tie(NULL), cout.tie(NULL);
	int T = 1; //cin >> T;
	while (T--)Solve();
	return 0;
}

读写

namespace IO
{
	struct ENDL
	{
		//By ProtectEMmm
	}endl;
	class IStream
	{
	public:
		IStream& operator >>(int& temp)
		{
			temp = 0; char c = GetChar(); bool flag = false;
			while (isdigit(c) != true) { if (c == '-')flag = true; c = GetChar(); }
			while (isdigit(c) == true) { temp = temp * 10 + c - '0', c = GetChar(); }
			/*========================================*/temp = flag ? -temp : temp; return *this;
		}
		IStream& operator >>(char& temp)
		{
			temp = ' '; char c = GetChar();
			while (ischar(c) != true)c = GetChar();
			/*====================*/temp = c; return *this;
		}
		IStream& operator >>(double& temp)
		{
			temp = 0; char c = GetChar(); bool flag = false;
			while (isdigit(c) != true) { if (c == '-')flag = true; c = GetChar(); }
			while (isdigit(c) == true) { temp = temp * 10 + c - '0', c = GetChar(); }
			if (c == '.')
			{
				c = GetChar();
				double point = 0.1;
				while (isdigit(c) == true)
				{
					temp += point * (c - '0');
					point *= 0.1; c = GetChar();
				}
			}
			temp = flag ? -temp : temp;
			/*==========*/return *this;
		}
		IStream& operator >>(long long& temp)
		{
			temp = 0; char c = GetChar(); bool flag = false;
			while (isdigit(c) != true) { if (c == '-')flag = true; c = GetChar(); }
			while (isdigit(c) == true) { temp = temp * 10 + c - '0', c = GetChar(); }
			/*========================================*/temp = flag ? -temp : temp; return *this;
		}
		IStream& operator >>(std::string& temp)
		{
			temp.clear(); char c = GetChar();
			while (ischar(c) != true)c = GetChar();
			while (ischar(c) == true)temp += c, c = GetChar();
			/*========================================*/return *this;
		}
	private:
		char BUF[1 << 20] = { 0 };
		char* POS = BUF, * END = BUF;
		/*====================*/
		inline char GetChar(void)
		{
			if (POS == END)
			{
				END = (POS = BUF) + fread(BUF, 1, 1 << 20, stdin);
			}
			return POS == END ? EOF : *POS++;
		}
		inline bool ischar(const char& c)
		{
			return c != ' ' && c != '\n';
		}
		inline bool isdigit(const char& c)
		{
			return '0' <= c && c <= '9';
		}
	}cin;
	class OStream
	{
	public:
		~OStream(void)
		{
			Flush();
		}
		inline void Flush(void)
		{
			fwrite(BUF, 1, POS - BUF, stdout); POS = BUF;
		}
		inline void SetPoint(int x)
		{
			point = x;
		}
		OStream& operator <<(int temp)
		{
			int Top = 0; static int Stack[64];
			if (temp < 0) { PutChar('-'); temp = -temp; }
			do { Stack[Top++] = temp % 10; temp /= 10; } while (temp);
			while (Top) { PutChar(Stack[--Top] + '0'); } return *this;
		}
		OStream& operator <<(char temp)
		{
			PutChar(temp); return *this;
		}
		OStream& operator <<(ENDL temp)
		{
			PutChar('\n'); Flush(); return *this;
		}
		OStream& operator <<(double temp)
		{
			if (temp < 0)
			{
				PutChar('-');
				temp = -temp;
			}
			long long integer = temp;
			*this << integer;
			temp -= integer;
			PutChar('.');
			for (int i = 1; i <= point; ++i)
			{
				temp *= 10;
				PutChar(int(temp) + '0');
				temp -= int(temp);
			}
			return *this;
		}
		OStream& operator <<(long long temp)
		{
			int Top = 0; static int Stack[64];
			if (temp < 0) { PutChar('-'); temp = -temp; }
			do { Stack[Top++] = temp % 10; temp /= 10; } while (temp);
			while (Top) { PutChar(Stack[--Top] + '0'); } return *this;
		}
		OStream& operator <<(std::string temp)
		{
			for (auto c : temp)
			{
				PutChar(c);
			}
			return *this;
		}
		OStream& operator <<(const char temp[])
		{
			int p = 0;
			while (temp[p] != '\0')
			{
				PutChar(temp[p++]);
			}
			return *this;
		}
	private:
		int point = 6; char BUF[1 << 20] = { 0 };
		char* POS = BUF, * END = BUF + (1 << 20);
		/*====================*/
		inline void PutChar(char temp)
		{
			if (POS == END)
			{
				Flush();
			}
			*POS++ = temp;
		}
	}cout;
}
using namespace IO;

图论

存储

class Graph
{
public:
	struct Edge
	{
		int u, v, w;
		Edge(int _u = 0, int _v = 0, int _w = 0)
		{
			u = _u, v = _v, w = _w;
		}
		friend bool operator<(const Edge& a, const Edge& b)
		{
			return a.w < b.w;
		}
		int node(int x)const
		{
			return x == u ? v : u;
		}
	};
	/*====================*/
	int n, m;
	vector<Edge>edge;
	vector<vector<int>>G;
	/*====================*/
	void Init(int n, int m)
	{
		this->n = n, this->m = m;
		G.assign(n + 1, vector<int>());
	}
	void AddEdge(int u, int v, int w)
	{
		edge.push_back(Edge(u, v, w));
		G[u].push_back(edge.size() - 1);
		G[v].push_back(edge.size() - 1);
	}
};

2-SAT

namespace _TwoSAT
{
	using namespace _SCC;
	void Init(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			int u = idx[i][1], v = idx[i][0];
			if (belong[u] == belong[v])
			{
				cout << "IMPOSSIBLE" << endl; return;
			}
		}
		cout << "POSSIBLE" << endl;
		for (int i = 1; i <= n; ++i)
		{
			int u = idx[i][1], v = idx[i][0];
			cout << ((belong[u] < belong[v]) ? 1 : 0) << " ";
		}
		cout << endl;
	}
}

欧拉图

无向图

namespace _Euler
{
	/*
	默认连通图,-1不存在,0存在欧拉路径,1存在欧拉回路
	*/
	const int N = 1e5 + 10;
	/*====================*/
	int degree[N];
	/*====================*/
	int Init(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			degree[i] = G[i].size();
		}
		int cnt = 0;
		for (int i = 1; i <= n; ++i)
		{
			if (degree[i] % 2 == 1)cnt++;
		}
		return cnt == 0 ? 1 : (cnt == 2 ? 0 : -1);
	}
}

有向图

namespace _Euler
{
	/*
	默认连通图,-1不存在,0存在欧拉路径,1存在欧拉回路
	*/
	const int N = 1e5 + 10;
	/*====================*/
	int degree[N];
	/*====================*/
	int Init(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			degree[i] = 0;
		}
		for (int i = 1; i <= m; ++i)
		{
			int u = edge[i].u;
			int v = edge[i].v;
			degree[u]++, degree[v]--;
		}
		int cnt1 = 0, cnt2 = 0, cnt3 = 0;
		for (int i = 1; i <= n; ++i)
		{
			if (degree[i] == -1)cnt1++;
			if (degree[i] == +0)cnt2++;
			if (degree[i] == +1)cnt3++;
		}
		if (cnt1 == 1 && cnt3 == 1 && cnt2 + 2 == n)
		{
			return +0;
		}
		else if (cnt2 == n)
		{
			return +1;
		}
		else
		{
			return -1;
		}
	}
}

最大团

namespace _MaxClique
{
	const int N = 5e1 + 10;
	/*====================*/
	int n; int G[N][N];
	int dp[N], stk[N][N], res;
	/*====================*/
	bool DFS(int ns, int dep)
	{
		if (ns == 0)
		{
			if (dep > res)
			{
				res = dep; return true;
			}
			return false;
		}
		for (int i = 0; i < ns; ++i)
		{
			int u = stk[dep][i], cnt = 0;
			if (dep + dp[u] <= res)return false;
			if (dep + ns - i <= res)return false;
			for (int j = i + 1; j < ns; ++j)
			{
				int v = stk[dep][j];
				if (G[u][v])stk[dep + 1][cnt++] = v;
			}
			if (DFS(cnt, dep + 1))return true;
		}
		return false;
	}
	/*====================*/
	int Init(void)
	{
		cin >> n; res = 0;
		memset(dp, 0, sizeof(dp));
		for (int i = 1; i <= n; ++i)
		{
			for (int j = 1; j <= n; ++j)
			{
				cin >> G[i][j];
			}
		}
		for (int i = n; i >= 1; --i)
		{
			int ns = 0;
			for (int j = i + 1; j <= n; ++j)
			{
				if (G[i][j])stk[1][ns++] = j;
			}
			DFS(ns, 1); dp[i] = res;
		}
		return res;
	}
}

最短路

SPFA

namespace _SPFA
{
	const int N = 1e5 + 10;
	/*====================*/
	int dis[N]; bool vis[N];
	/*====================*/
	void Init(int s)
	{
		memset(dis, 0X3F, sizeof(dis));
		memset(vis, false, sizeof(vis));
		queue<int>q; dis[s] = 0; q.push(s);
		while (!q.empty())
		{
			int cur = q.front(); q.pop(); vis[cur] = false;
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int val = edge[G[cur][i]].w;
				int nxt = edge[G[cur][i]].node(cur);
				if (dis[nxt] > dis[cur] + val)
				{
					dis[nxt] = dis[cur] + val;
					if (!vis[nxt])
					{
						q.push(nxt); vis[nxt] = true;
					}
				}
			}
		}
	}
}

Floyd

namespace _Floyd
{
	const int N = 2e2 + 10;
	/*====================*/
	int dp[N][N];
	/*====================*/
	void Init(void)
	{
		for (int k = 1; k <= n; ++k)
		{
			for (int i = 1; i <= n; ++i)
			{
				for (int j = 1; j <= n; ++j)
				{
					dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
				}
			}
		}
	}
}

Dijkstra

namespace _Dijkstra
{
	const int N = 1e5 + 10;
	/*====================*/
	struct Unit
	{
		int v, w;
		Unit(int _v = 0, int _w = 0)
		{
			v = _v, w = _w;
		}
		friend bool operator<(const Unit& a, const Unit& b)
		{
			return a.w > b.w;
		}
	};
	/*====================*/
	int dis[N]; bool vis[N];
	/*====================*/
	void Init(int s)
	{
		memset(dis, 0X3F, sizeof(dis));
		memset(vis, false, sizeof(vis));
		priority_queue<Unit>q;
		q.push(Unit(s, dis[s] = 0));
		while (!q.empty())
		{
			int cur = q.top().v; q.pop();
			if (vis[cur])continue; vis[cur] = true;
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int val = edge[G[cur][i]].w;
				int nxt = edge[G[cur][i]].node(cur);
				if (dis[nxt] > dis[cur] + val)
				{
					dis[nxt] = dis[cur] + val;
					q.push(Unit(nxt, dis[nxt]));
				}
			}
		}
	}
}

SPFA-SLF

namespace _SPFA
{
	const int N = 1e5 + 10;
	/*====================*/
	int dis[N]; bool vis[N];
	/*====================*/
	void Init(int s)
	{
		memset(dis, 0X3F, sizeof(dis));
		memset(vis, false, sizeof(vis));
		deque<int>q; dis[s] = 0; q.push_back(s);
		while (!q.empty())
		{
			int cur = q.front();
			q.pop_front(); vis[cur] = false;
			if (!q.empty() && dis[q.front()] > dis[q.back()])
			{
				swap(q.front(), q.back());
			}
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int val = edge[G[cur][i]].w;
				int nxt = edge[G[cur][i]].node(cur);
				if (dis[nxt] > dis[cur] + val)
				{
					dis[nxt] = dis[cur] + val;
					if (!vis[nxt])
					{
                        vis[nxt] = true;
						if (!q.empty() && dis[nxt] < dis[q.front()])
						{
							q.push_front(nxt);
						}
						else
						{
							q.push_back(nxt);
						}
					}
				}
			}
		}
	}
}

环相关

判环

namespace _Loop
{
	const int N = 1e5 + 10;
	/*====================*/
	int indegree[N];
	/*====================*/
	bool Init(void)
	{
		queue<int>q; int cnt = 0;
		memset(indegree, 0, sizeof(indegree));
		for (int i = 1; i <= m; ++i)
		{
			indegree[edge[i].v]++;
		}
		for (int i = 1; i <= n; ++i)
		{
			if (indegree[i] == 0)q.push(i);
		}
		while (!q.empty())
		{
			int cur = q.front(); q.pop(); cnt++;
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int nxt = edge[G[cur][i]].node(cur);
				if (--indegree[nxt] == 0)q.push(nxt);
			}
		}
		return cnt == n;
	}
}

判负环

namespace _Loop
{
	const int N = 1e5 + 10;
	/*====================*/
	int dis[N], cnt[N]; bool vis[N];
	/*====================*/
	bool Init(void)
	{
		queue<int>q;
		memset(cnt, 0, sizeof(cnt));
		memset(dis, 0, sizeof(dis));
		for (int i = 1; i <= n; ++i)
		{
			q.push(i); vis[i] = true;
		}
		while (!q.empty())
		{
			int cur = q.front();
			q.pop(); vis[cur] = false;
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int val = edge[G[cur][i]].w;
				int nxt = edge[G[cur][i]].node(cur);
				if (dis[nxt] > dis[cur] + val)
				{
					cnt[nxt] = cnt[cur] + 1;
					dis[nxt] = dis[cur] + val;
					if (cnt[nxt] > n)
					{
						return true;
					}
					if (!vis[nxt])
					{
						q.push(nxt); vis[nxt] = true;
					}
				}
			}
		}
		return false;
	}
}

求最小环

namespace _Loop
{
	int Init(void)
	{
		int res = 0X3F3F3F3F;
		for (int i = 1; i <= m; ++i)
		{
			_Dijkstra::Init(edge[i].v, i);
			res = min(res, dis[edge[i].u] + edge[i].w);
		}
		return res;
	}
}

网络流

最大流

ISAP
namespace _ISAP
{
	const int N = 1e5 + 10;
	const int M = 1e5 + 10;
	/*====================*/
	const int INF = 0X7FFFFFFF;
	/*====================*/
	struct Edge
	{
		int u, v, c, f;
		Edge(int _u = 0, int _v = 0, int _c = 0, int _f = 0)
		{
			u = _u, v = _v, c = _c, f = _f;
		}
	};
	/*====================*/
	int pre[N];//路径前驱
	int cur[N];//当前弧优化
	int n, m, s, t;//点,边,源,汇
	vector<int>G[N];//邻接表
	int d[N], vis[N], num[N];//图分层
	Edge edge[2 * M]; int cnt;//边
	/*====================*/
	void AddEdge(int u, int v, int c)
	{
		edge[cnt++] = Edge(u, v, c, 0);
		edge[cnt++] = Edge(v, u, 0, 0);
		G[u].push_back(cnt - 2);
		G[v].push_back(cnt - 1);
	}
	/*====================*/
	void BFS(void)
	{
		for (int i = 0; i <= n; ++i)
		{
			d[i] = vis[i] = num[i] = 0;
		}
		queue<int>q; q.push(t);
		d[t] = 0; vis[t] = 1;
		while (!q.empty())
		{
			int x = q.front(); q.pop();
			for (int i = 0; i < G[x].size(); ++i)
			{
				Edge& e = edge[G[x][i]];
				if (!vis[e.u] && e.c > e.f)
				{
					vis[e.u] = 1; d[e.u] = d[x] + 1; q.push(e.u);
				}
			}
		}
		for (int i = 0; i < n; ++i)num[d[i]]++;
	}
	int Augumemt(void)
	{
		int x, k = INF;
		x = t; while (x != s)
		{
			Edge& e = edge[pre[x]];
			k = min(k, e.c - e.f);
			x = edge[pre[x]].u;
		}
		x = t; while (x != s)
		{
			edge[pre[x]].f += k;
			edge[pre[x] ^ 1].f -= k;
			x = edge[pre[x]].u;
		}
		return k;
	}
	int MaxFlow(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			pre[i] = cur[i] = 0;
		}

		BFS(); int x = s, flow = 0;
		
		while (d[s] < n)
		{
			if (x == t)
			{
				flow += Augumemt(); x = s;
			}
			int flag = 0;
			for (int& i = cur[x]; i < G[x].size(); ++i)
			{
				Edge& e = edge[G[x][i]];
				if (e.c > e.f && d[x] == d[e.v] + 1)
				{
					flag = 1; pre[e.v] = G[x][i]; x = e.v; break;
				}
			}
			if (!flag)
			{
				int l = n - 1;
				for (int i = 0; i < G[x].size(); ++i)
				{
					Edge& e = edge[G[x][i]];
					if (e.c > e.f)l = min(l, d[e.v]);
				}
				if (--num[d[x]] == 0)break;
				num[d[x] = l + 1]++; cur[x] = 0;
				if (x != s)x = edge[pre[x]].u;
			}
		}
		return flow;
	}
	/*====================*/
	int Init(void)
	{
		cnt = 0;
		cin >> n >> m >> s >> t;
		for (int i = 1; i <= n; ++i)
		{
			G[i].clear();
		}
		for (int i = 1; i <= m; ++i)
		{
			int u, v, c;
			cin >> u >> v >> c;
			AddEdge(u, v, c);
		}
		return MaxFlow();
	}
};
HLPP
namespace _HLPP
{
	const int N = 1e5 + 10;
	const int M = 1e5 + 10;
	/*====================*/
	const int INF = 0X7FFFFFFF;
	/*====================*/
	struct Edge
	{
		int next, v, c;
		Edge(int _next = 0, int _v = 0, int _c = 0)
		{
			next = _next, v = _v, c = _c;
		}
	};
	/*====================*/
	int n, m, s, t;
	int d[N], num[N];
	stack<int> lib[N];
	int ex[N], level = 0;
	Edge edge[2 * M]; int head[N], cnt;
	/*====================*/
	void AddEdge(int u, int v, int c) 
	{
		edge[cnt] = Edge(head[u], v, c), head[u] = cnt++;
		edge[cnt] = Edge(head[v], u, 0), head[v] = cnt++;
	}
	/*====================*/
	int Push(int u) 
	{
		bool init = u == s;
		for (int i = head[u]; i != -1; i = edge[i].next)
		{
			const int& v = edge[i].v, & c = edge[i].c;
			if (!c || init == false && d[u] != d[v] + 1)continue;
			int k = init ? c : min(c, ex[u]);
			if (v != s && v != t && !ex[v]) lib[d[v]].push(v), level = max(level, d[v]);
			ex[u] -= k, ex[v] += k, edge[i].c -= k, edge[i ^ 1].c += k;
			if (!ex[u]) return 0;
		}
		return 1;
	}
	void Relabel(int x) 
	{
		d[x] = INF;
		for (int i = head[x]; i != -1; i = edge[i].next)
		{
			if (edge[i].c) d[x] = min(d[x], d[edge[i].v]);
		}
		if (++d[x] < n) 
		{  
			lib[d[x]].push(x); level = max(level, d[x]); ++num[d[x]];
		}
	}
	bool BFS(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			d[i] = INF; num[i] = 0;
		}
		queue<int>q; q.push(t), d[t] = 0;
		while (!q.empty()) 
		{
			int u = q.front(); q.pop(); num[d[u]]++;
			for (int i = head[u]; i!=-1; i = edge[i].next) 
			{
				const int& v = edge[i].v;
				if (edge[i ^ 1].c && d[v] > d[u] + 1) d[v] = d[u] + 1, q.push(v);
			}
		}
		return d[s] != INF;
	}
	int Select(void) 
	{
		while (lib[level].size() == 0 && level > -1) level--;
		return level == -1 ? 0 : lib[level].top();
	}
	int MaxFlow(void) 
	{
		if (!BFS()) return 0;
		d[s] = n; Push(s); int x;
		while (x = Select())
		{
			lib[level].pop();
			if (Push(x)) 
			{
				if (!--num[d[x]])
				{
					for (int i = 1; i <= n; ++i)
					{
						if (i != s && i != t && d[i] > d[x] && d[i] < n + 1)
						{
							d[i] = n + 1;
						}
					}
				}
				Relabel(x);
			}
		}
		return ex[t];
	}
	/*====================*/
	int Init(void)
	{
		cnt = 0;
		cin >> n >> m >> s >> t;
		memset(head, -1, sizeof(head));
		for (int i = 1; i <= m; ++i)
		{
			int u, v, c;
			cin >> u >> v >> c;
			AddEdge(u, v, c);
		}
		return MaxFlow();
	}
}
Dinic
/*
* 使用方法
* 1.创建对象
* 2.调用AddVertex()创建点
* 3.调用Init()初始化大小
* 4.调用AddEdge()创建边
* 5.调用MaxFlow()获取最大流
*/
class C_Dinic
{
public:
	static const int INF = 0X7FFFFFFF;
	/*====================*/
	struct Edge
	{
		int u, v, c, f;
		Edge(int _u = 0, int _v = 0, int _c = 0, int _f = 0)
		{
			u = _u, v = _v, c = _c, f = _f;
		}
	};
	/*====================*/
	int n, s, t;
	/*====================*/
	vector<Edge>edge;
	vector<vector<int>>G;
	/*====================*/
	C_Dinic(void)
	{
		n = 2, s = 1, t = 2;
	}
private:
	vector<int>cur;//当前弧优化
	vector<int>d, vis;//图分层
	/*====================*/
	bool BFS(void)
	{
		fill(d.begin(), d.end(), 0);
		fill(vis.begin(), vis.end(), 0);
		d[s] = 0; vis[s] = 1;
		queue<int>q; q.push(s);
		while (!q.empty())
		{
			int x = q.front(); q.pop();
			for (int i = 0; i < G[x].size(); ++i)
			{
				Edge& e = edge[G[x][i]];
				if (!vis[e.v] && e.c > e.f)
				{
					vis[e.v] = 1; d[e.v] = d[x] + 1; q.push(e.v);
				}
			}
		}
		return vis[t];
	}
	int DFS(int x, int k)
	{
		int flow = 0, f;
		if (x == t || k == 0) return k;
		for (int& i = cur[x]; i < G[x].size(); ++i)
		{
			Edge& e = edge[G[x][i]];
			if (d[x] + 1 == d[e.v] && (f = DFS(e.v, min(k, e.c - e.f))) > 0)
			{
				e.f += f; edge[G[x][i] ^ 1].f -= f;
				flow += f; k -= f; if (k == 0) break;
			}
		}
		return flow;
	}
public:
	int S(void) { return s; }
	int T(void) { return t; }
	/*====================*/
	int AddVertex(void)
	{
		return ++n;
	}
	int AddEdge(int u, int v, int c)
	{
		edge.push_back(Edge(u, v, c, 0));
		edge.push_back(Edge(v, u, 0, 0));
		G[u].push_back(edge.size() - 2);
		G[v].push_back(edge.size() - 1);
		return edge.size() - 2;
	}
	/*====================*/
	void Init(void)
	{
		d.assign(n + 1, int());
		vis.assign(n + 1, int());
		cur.assign(n + 1, int());
		G.assign(n + 1, vector<int>());
	}
	/*====================*/
	int MaxFlow(void)
	{
		int flow = 0;
		while (BFS())
		{
			flow += DFS(s, INF);
			fill(cur.begin(), cur.end(), 0);
		}
		return flow;
	}
};
Dinic最后反悔
class C_MaxFlow
{
public:
	static const int INF = 0X7FFFFFFF;
	/*====================*/
	struct Edge
	{
		int u, v, c, f;
		Edge(int _u = 0, int _v = 0, int _c = 0, int _f = 0)
		{
			u = _u, v = _v, c = _c, f = _f;
		}
	};
	/*====================*/
	int n = 2, s = 1, t = 2;
	/*====================*/
	vector<Edge>edge;
	vector<vector<int>>G1;
	vector<vector<int>>G2;
private:
	vector<int>cur;//当前弧优化
	vector<int>d, vis;//图分层
	/*====================*/
	bool BFS(void)
	{
		fill(d.begin(), d.end(), 0);
		fill(vis.begin(), vis.end(), 0);
		d[s] = 0; vis[s] = 1;
		queue<int>q; q.push(s);
		while (!q.empty())
		{
			int x = q.front(); q.pop();
			for (int i = 0; i < G1[x].size(); ++i)
			{
				Edge& e = edge[G1[x][i]];
				if (!vis[e.v] && e.c > e.f)
				{
					vis[e.v] = 1; d[e.v] = d[x] + 1; q.push(e.v);
				}
			}
		}
		return vis[t];
	}
	int DFS(int x, int k)
	{
		int flow = 0, f;
		if (x == t || k == 0) return k;
		for (int& i = cur[x]; i < G1[x].size(); ++i)
		{
			Edge& e = edge[G1[x][i]];
			if (d[x] + 1 == d[e.v] && (f = DFS(e.v, min(k, e.c - e.f))) > 0)
			{
				e.f += f; edge[G1[x][i] ^ 1].f -= f;
				flow += f; k -= f; if (k == 0) break;
			}
		}
		return flow;
	}
public:
	int S(void) { return s; }
	int T(void) { return t; }
	/*====================*/
	int AddVertex(void)
	{
		return ++n;
	}
	int AddEdge(int u, int v, int c)
	{
		edge.push_back(Edge(u, v, c, 0));
		edge.push_back(Edge(v, u, 0, 0));
		G1[u].push_back(edge.size() - 2);
		G2[v].push_back(edge.size() - 1);
		return edge.size() - 2;
	}
	/*====================*/
	void Init(void)
	{
		d.assign(n + 1, int());
		vis.assign(n + 1, int());
		cur.assign(n + 1, int());
		G1.assign(n + 1, vector<int>());
		G2.assign(n + 1, vector<int>());
	}
	/*====================*/
	int MaxFlow(void)
	{
		int flow = 0;
		while (BFS())
		{
			flow += DFS(s, INF);
			fill(cur.begin(), cur.end(), 0);
		}
		for (int i = 1; i <= n; ++i)
		{
			for (auto idx : G2[i])
			{
				G1[i].push_back(idx);
			}
		}
		while (BFS())
		{
			flow += DFS(s, INF);
			fill(cur.begin(), cur.end(), 0);
		}
		return flow;
	}
};
Dinic-Scaling
namespace _Dinic
{
	const int N = 1e5 + 10;
	const int M = 1e5 + 10;
	/*====================*/
	const int INF = 0X7FFFFFFF;
	/*====================*/
	struct Edge
	{
		int u, v, c, f;
		Edge(int _u = 0, int _v = 0, int _c = 0, int _f = 0)
		{
			u = _u, v = _v, c = _c, f = _f;
		}
		friend bool operator<(const Edge& a, const Edge& b)
		{
			return a.c > b.c;
		}
	};
	/*====================*/
	int d[N];//图分层
	int cur[N];//当前弧优化
	Edge _edge[M];//即将加入流网络的边
	int n, m, s, t;//点,边,源,汇
	vector<int>G[N];//邻接表
	Edge edge[2 * M]; int cnt;//边
	/*====================*/
	void AddEdge(int u, int v, int c)
	{
		edge[cnt++] = Edge(u, v, c, 0);
		edge[cnt++] = Edge(v, u, 0, 0);
		G[u].push_back(cnt - 2);
	}
	/*====================*/
	bool BFS(void)
	{
		for (int i = 0; i <= n; ++i)
		{
			d[i] = INF;
		}
		queue<int>q; q.push(s); d[s] = 0;
		while (!q.empty())
		{
			int x = q.front(); q.pop();
			for (int i = 0; i < G[x].size(); ++i)
			{
				Edge& e = edge[G[x][i]];
				if (d[e.v] >= INF && e.c > e.f)
				{
					d[e.v] = d[x] + 1; q.push(e.v);
				}
			}
		}
		return d[t] < INF;
	}
	int DFS(int x, int k)
	{
		int flow = 0, f;
		if (x == t || k == 0) return k;
		for (int& i = cur[x]; i < G[x].size(); ++i)
		{
			Edge& e = edge[G[x][i]];
			if (d[x] + 1 == d[e.v] && (f = DFS(e.v, min(k, e.c - e.f))) > 0)
			{
				e.f += f; edge[G[x][i] ^ 1].f -= f;
				flow += f; k -= f; if (k == 0) break;
			}
		}
		return flow;
	}
	int Dinic(void)
	{
		int flow = 0;
		while (BFS())
		{
			flow += DFS(s, INF);
			for (int i = 1; i <= n; ++i)
			{
				cur[i] = 0;
			}
		}
		return flow;
	}
	int MaxFlow(void)
	{
		int flow = 0;
		sort(_edge, _edge + m);
		for (int type : {0, 1})
		{
			for (int p = 1 << 30, i = 0; p; p /= 2)
			{
				while (i < m && _edge[i].c >= p)
				{
					if (type == 0)AddEdge(_edge[i].u, _edge[i].v, _edge[i].c);
					if (type == 1)G[_edge[i].v].push_back(i * 2 + 1); i++;
				}
				flow += Dinic();
			}
		}
		return flow;
	}
	/*====================*/
	int Init(void)
	{
		cnt = 0;
		cin >> n >> m >> s >> t;
		for (int i = 1; i <= n; ++i)
		{
			G[i].clear();
		}
		for (int i = 0; i < m; ++i)
		{
			int u, v, c;
			cin >> u >> v >> c;
			_edge[i] = Edge(u, v, c);
		}
		return MaxFlow();
	}
}

费用流

EK
namespace _EK
{
	const int N = 1e5 + 10;
	const int M = 1e5 + 10;
	/*====================*/
	const int INF = 0X3F3F3F3F;
	/*====================*/
	struct Edge
	{
		int next, v, c, w;
		Edge(int _next = 0, int _v = 0, int _c = 0, int _w = 0)
		{
			next = _next, v = _v, c = _c, w = _w;
		}
	};
	/*====================*/
	int n, m, s, t;
	int maxflow, mincost;
	Edge edge[2 * M]; int head[N], cnt;
	int dis[N], pre[N], incf[N]; bool vis[N];
	/*====================*/
	void AddEdge(int u, int v, int c, int w)
	{
		edge[cnt] = Edge(head[u], v, c, +w); head[u] = cnt++;
		edge[cnt] = Edge(head[v], u, 0, -w); head[v] = cnt++;
	}
	/*====================*/
	bool SPFA(void)
	{
		memset(dis, 0X3F, sizeof(dis));
		queue<int> q; q.push(s);
		dis[s] = 0, incf[s] = INF, incf[t] = 0;
		while (!q.empty())
		{
			int u = q.front(); q.pop(); vis[u] = false;
			for (int i = head[u]; i != -1; i = edge[i].next)
			{
				int v = edge[i].v, c = edge[i].c, w = edge[i].w;
				if (!c || dis[v] <= dis[u] + w) continue;
				dis[v] = dis[u] + w, incf[v] = min(c, incf[u]), pre[v] = i;
				if (!vis[v])q.push(v), vis[v] = true;
			}
		}
		return incf[t];
	}
	int MinCost(void)
	{
		while (SPFA())
		{
			maxflow += incf[t];
			for (int u = t; u != s; u = edge[pre[u] ^ 1].v)
			{
				edge[pre[u]].c -= incf[t];
				edge[pre[u] ^ 1].c += incf[t];
				mincost += incf[t] * edge[pre[u]].w;
			}
		}
		return mincost;
	}
	/*====================*/
	int Init(void)
	{
		cin >> n >> m >> s >> t;
		mincost = maxflow = cnt = 0;
		memset(head, -1, sizeof(head));
		for (int i = 1; i <= m; ++i)
		{
			int u, v, c, w;
			cin >> u >> v >> c >> w;
			AddEdge(u, v, c, w);
		}
		return MinCost();
	}
}
ZKW费用流
/*
* 使用方法
* 1.创建对象
* 2.调用AddVertex()创建点
* 3.调用Init()初始化大小
* 4.调用AddEdge()创建边
* 5.调用MinCost()获取最小费用
*/
class Min_Cost
{
public:
	static const int INF = 0X7FFFFFFF;
	/*====================*/
	struct Edge
	{
		int u, v, c, w;
		Edge(int _u = 0, int _v = 0, int _c = 0, int _w = 0)
		{
			u = _u, v = _v, c = _c, w = _w;
		}
	};
	/*====================*/
	int n = 2, s = 1, t = 2;
	/*====================*/
	vector<Edge>edge;
	vector<vector<int>>G;
	int mincost, maxflow;
private:
	vector<int>dis;
	vector<bool>vis;
	/*====================*/
	bool SPFA(void)
	{
		fill(vis.begin(), vis.end(), false);
		fill(dis.begin(), dis.end(), INF);
		vis[t] = true, dis[t] = 0;
		deque<int> q; q.push_back(t);
		while (!q.empty())
		{
			int x = q.front(); q.pop_front(), vis[x] = false;
			if (!q.empty() && dis[q.front()] > dis[q.back()])
			{
				swap(q.front(), q.back());
			}
			for (int i = 0; i < G[x].size(); ++i)
			{
				Edge& e1 = edge[G[x][i] ^ 0];
				Edge& e2 = edge[G[x][i] ^ 1];
				if (e2.c != 0 && dis[e1.v] > dis[x] - e1.w)
				{
					dis[e1.v] = dis[x] - e1.w;
					if (!vis[e1.v])
					{
						vis[e1.v] = true;
						if (!q.empty() && dis[e1.v] < dis[q.front()])
						{
							q.push_front(e1.v);
						}
						else
						{
							q.push_back(e1.v);
						}
					}
				}
			}
		}
		return dis[s] < INF;
	}
	int DFS(int x, int k)
	{
		vis[x] = true; int flow = 0, f;
		if (x == t || k == 0) return k;
		for (int i = 0; i < G[x].size(); ++i)
		{
			Edge& e1 = edge[G[x][i] ^ 0];
			Edge& e2 = edge[G[x][i] ^ 1];
			if (vis[e1.v] || e1.c == 0)continue;
			if (dis[x] - e1.w == dis[e1.v] && (f = DFS(e1.v, min(k, e1.c))) > 0)
			{
				e1.c -= f, e2.c += f; flow += f, k -= f;
				mincost += f * e1.w; if (k == 0) break;
			}
		}
		return flow;
	}
public:
	/*====================*/
	int S(void) { return s; }
	int T(void) { return t; }
	/*====================*/
	int AddVertex(void)
	{
		return ++n;
	}
	int AddEdge(int u, int v, int c, int w)
	{
		edge.push_back(Edge(u, v, c, +w));
		edge.push_back(Edge(v, u, 0, -w));
		G[u].push_back(edge.size() - 2);
		G[v].push_back(edge.size() - 1);
		return edge.size() - 2;
	}
	/*====================*/
	void Init(void)
	{
		dis.assign(n + 1, int());
		vis.assign(n + 1, int());
		G.assign(n + 1, vector<int>());
	}
	/*====================*/
	int MinCost(void)
	{
		maxflow = mincost = 0;
		while (SPFA())
		{
			vis[t] = true;
			while (vis[t])
			{
				fill(vis.begin(), vis.end(), false);
				maxflow += DFS(s, INF);
			}
		}
		return mincost;
	}
};

支配树

namespace Lengauer_Tarjan
{
	struct Edge
	{
		int v, x;
		Edge(int _v = 0, int _x = 0)
		{
			v = _v, x = _x;
		}
	};
	/*====================*/
	int n, m;
	Edge edge[M * 3]; int head[3][N], tot;
	int idx[N], dfn[N], dfc;
	int fa[N], fth[N], mn[N], idm[N], sdm[N];
	/*====================*/
	void Add(int x, int u, int v)
	{
		edge[head[x][u] = ++tot] = Edge(v, head[x][u]);
	}
	void Add(int u, int v)
	{
		Add(0, u, v); Add(1, v, u);
	}
	void DFS(int u)
	{
		idx[dfn[u] = ++dfc] = u;
		for (int i = head[0][u]; i; i = edge[i].x)
		{
			int v = edge[i].v;
			if (!dfn[v])
			{
				DFS(v), fth[v] = u;
			}
		}
	}
	int Find(int x)
	{
		if (fa[x] == x)
		{
			return x;
		}
		int tmp = fa[x];
		fa[x] = Find(fa[x]);
		if (dfn[sdm[mn[tmp]]] < dfn[sdm[mn[x]]])
		{
			mn[x] = mn[tmp];
		}
		return fa[x];
	}
	void Tarjan(int st)
	{
		DFS(st);
		for (int i = 1; i <= n; ++i)
		{
			fa[i] = sdm[i] = mn[i] = i;
		}
		for (int i = dfc; i >= 2; --i)
		{
			int u = idx[i], res = INF;
			for (int j = head[1][u]; j; j = edge[j].x)
			{
				int v = edge[j].v; Find(v);
				if (dfn[v] < dfn[u])
				{
					res = min(res, dfn[v]);
				}
				else
				{
					res = min(res, dfn[sdm[mn[v]]]);
				}
			}
			sdm[u] = idx[res];
			fa[u] = fth[u];
			Add(2, sdm[u], u);
			u = fth[u];
			for (int j = head[2][u]; j; j = edge[j].x)
			{
				int v = edge[j].v; Find(v);
				if (sdm[mn[v]] == u)
				{
					idm[v] = u;
				}
				else
				{
					idm[v] = mn[v];
				}
			}
			head[2][u] = 0;
		}
		for (int i = 2; i <= dfc; ++i)
		{
			int u = idx[i];
			if (idm[u] != sdm[u])
			{
				idm[u] = idm[idm[u]];
			}
		}
	}
	/*====================*/
	void Init(int s)
	{
		Tarjan(s);
		tot = dfc = 0;
		for (int i = 1; i <= n; ++i)
		{
			dfn[i] = head[0][i] = head[1][i] = head[2][i] = 0;
		}
	}
	//树上连边idm[i] -> i;
}

拓扑排序

namespace _TopSort
{
    const int N = 1e5 + 10;
	/*====================*/
	int indegree[N];
	/*====================*/
	void Init(void)
	{
		queue<int>q;
		memset(indegree, 0, sizeof(indegree));
		for (int i = 1; i <= m; ++i)
		{
			indegree[edge[i].v]++;
		}
		for (int i = 1; i <= n; ++i)
		{
			if (indegree[i] == 0)q.push(i);
		}
		while (!q.empty())
		{
			int cur = q.front(); q.pop(); cout << cur << " ";
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int nxt = edge[G[cur][i]].node(cur);
				if (--indegree[nxt] == 0)q.push(nxt);
			}
		}
	}
}

差分约束

namespace _SDC
{
    /*
    存在负环时无解
    记得建立一个超级源点
    A-B<=W的不等式,由B->A,边权为W
    跑最短路时为最大差值,跑最长路时为最小差值
    */
    const int N = 1e5 + 10;
	/*====================*/
	const int INF = 0X3F3F3F3F;
	/*====================*/
	int dis[N]; int cnt[N]; bool vis[N];
	/*====================*/
	bool Init(void)
	{
		G[0].clear(); cnt[0] = 0;
		for (int i = 1; i <= n; ++i)
		{
			G[0].push_back(++m);
			edge[m] = Edge(0, i, 0);
			dis[i] = INF, vis[i] = false, cnt[i] = 0;
		}
		queue<int>q; dis[0] = 0; q.push(0);
		while (!q.empty())
		{
			int cur = q.front(); q.pop(); vis[cur] = false;
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int val = edge[G[cur][i]].w;
				int nxt = edge[G[cur][i]].node(cur);
				if (dis[nxt] > dis[cur] + val)
				{
					cnt[nxt] = cnt[cur] + 1;
					dis[nxt] = dis[cur] + val;
					if (cnt[nxt] > n)return false;
					if (!vis[nxt])
					{
						q.push(nxt); vis[nxt] = true;
					}
				}
			}
		}
		return true;
	}
}

图的连通性

双连通分量

边双连通分量
namespace _E_DCC
{
	const int N = 1e5 + 10;
	/*====================*/
	int belong[N], cnt;
	int dfn[N], low[N], num;
	/*====================*/
	void Tarjan(int cur, int in_edge)
	{
		dfn[cur] = low[cur] = ++num;
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = edge[G[cur][i]].node(cur);
			if (!dfn[nxt])
			{
				Tarjan(nxt, G[cur][i]);
				low[cur] = min(low[cur], low[nxt]);
				if (low[nxt] > dfn[cur])
				{
					edge[G[cur][i]].bridge = true;
				}
			}
			else if (i != in_edge)
			{
				low[cur] = min(low[cur], dfn[nxt]);
			}
		}
	}
	void DFS(int cur)
	{
		belong[cur] = cnt;
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = edge[G[cur][i]].node(cur);
			if (edge[G[cur][i]].bridge)continue;
			if (belong[nxt])continue; DFS(nxt);
		}
	}
	/*====================*/
	void Init(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			if (!dfn[i])Tarjan(i, 0);
		}
		for (int i = 1; i <= n; ++i)
		{
			if (!belong[i])cnt++, DFS(i);
		}
	}
}
点双连通分量
namespace _V_DCC
{
	const int N = 1e5 + 10;
	/*====================*/
	vector<int>dcc[N];
	bool cut[N]; int cnt;
	stack<int>lib; int root;
	int dfn[N], low[N], num;
	/*====================*/
	void Tarjan(int cur)
	{
		int flag = 0; lib.push(cur);
		dfn[cur] = low[cur] = ++num;
		if (cur == root && G[cur].size() == 0)
		{
			dcc[++cnt].push_back(cur); return;
		}
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = edge[G[cur][i]].node(cur);
			if (!dfn[nxt])
			{
				Tarjan(nxt);
				low[cur] = min(low[cur], low[nxt]);
				if (low[nxt] >= dfn[cur])
				{
					flag++; cnt++; int top;
					if (cur != root || flag > 1)
					{
						cut[cur] = true;
					}
					do
					{
						top = lib.top(); lib.pop();
						dcc[cnt].push_back(top);
					} while (top != nxt);
					dcc[cnt].push_back(cur);
				}
			}
			else
			{
				low[cur] = min(low[cur], dfn[nxt]);
			}
		}
	}
	/*====================*/
	void Init(void)
	{
		for (int i = 1; i <= n; ++i)
		{
			if (!dfn[i])Tarjan(root = i);
		}
	}
}
获取点双内部的边
void Tarjan(int cur, int e)
{
	dfn[cur] = low[cur] = ++num;
	if (cur != root || G[cur].size() != 0)
	{
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = edge[G[cur][i]].node(cur);
			if (!dfn[nxt])
			{
				lib.push(G[cur][i]); Tarjan(nxt, G[cur][i]);
				low[cur] = min(low[cur], low[nxt]);
				if (low[nxt] >= dfn[cur])
				{
					cnt++; int top;
					do
					{
						top = lib.top(); lib.pop();
						dcc[cnt].push_back(edge[top].w);
					} while (top != G[cur][i]);
				}
			}
			else
			{
				if (dfn[nxt] < dfn[cur] && G[cur][i] != e)
				{
					lib.push(G[cur][i]);
				}
				low[cur] = min(low[cur], dfn[nxt]);
			}
		}
	}
}

强连通分量

namespace _SCC
{
	const int N = 1e5 + 10;
	/*====================*/
	int belong[N];
	int dfn[N], low[N], num;
	stack<int>lib; int ins[N];
	vector<int>scc[N]; int cnt;
	/*====================*/
	void Tarjan(int cur)
	{
		lib.push(cur); ins[cur] = 1;
		dfn[cur] = low[cur] = ++num;
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = edge[G[cur][i]].node(cur);
			if (!dfn[nxt])
			{
				Tarjan(nxt);
				low[cur] = min(low[cur], low[nxt]);
			}
			else if (ins[nxt])
			{
				low[cur] = min(low[cur], dfn[nxt]);
			}
		}
		if (dfn[cur] == low[cur])
		{
			cnt++; int top;
			do
			{
				top = lib.top(); lib.pop(); ins[top] = 0;
				belong[top] = cnt; scc[cnt].push_back(top);
			} while (top != cur);
		}
	}
	/*====================*/
	void Init(void)
	{
        num = cnt = 0;
		for (int i = 1; i <= n; ++i)
		{
			dfn[i] = low[i] = 0;
		}
		for (int i = 1; i <= n; ++i)
		{
			if (!dfn[i])Tarjan(i);
		}
	}
}

最小树形图

有向有环图

挖坑:朱刘算法

有向无环图

namespace _DMST
{
	const int N = 1e5 + 10;
    /*====================*/
	const int INF = 0X7FFFFFFF;
	/*====================*/
	int val[N], sum;
	/*====================*/
	void Init(void)
	{
		sum = 0;
		for (int i = 1; i <= n; ++i)
		{
			val[i] = INF;
		}
		for (int i = 1; i <= m; ++i)
		{
			int u = edge[i].u;
			int v = edge[i].v;
			int w = edge[i].w;
			val[v] = min(val[v], w);
		}
		for (int i = 1; i <= n; ++i)
		{
			if (val[i] != INF)
			{
				sum += val[i];
			}
		}
	}
}

三元环计数

const int N = 1e5 + 10;
const int M = 2e5 + 10;
/*====================*/
int n, m;
struct Edge
{
	int u, v;
	Edge(int _u = 0, int _v = 0)
	{
		u = _u, v = _v;
	}
};
Edge edge[M];
int degree[N];
vector<int>Out[N];
/*====================*/
int tag[N];
/*====================*/
void Solve(void)
{
	cin >> n >> m;
	for (int i = 1; i <= m; ++i)
	{
		int u, v; 
		cin >> u >> v; 
		edge[i] = Edge(u, v);
		degree[u]++, degree[v]++;
	}
	for (int i = 1; i <= m; ++i)
	{
		int u = edge[i].u, v = edge[i].v;
		if (degree[u] == degree[v] && u > v)swap(u, v);
		if (degree[u] != degree[v] && degree[u] > degree[v])swap(u, v);
		Out[u].push_back(v);
	}
	int ans = 0;
	for (int u = 1; u <= n; ++u)
	{
		for (auto v : Out[u])
		{
			tag[v] = u;
		}
		for (auto v : Out[u])
		{
			for (auto w : Out[v])
			{
				if (tag[w] == u)
				{
					ans++;
				}
			}
		}
	}
	cout << ans << endl;
}

树论

LCT

class Link_Cut_Tree
{
public:
	void Init(void)
	{
		
	}
private:
	int rev[N], fa[N], ch[N][2];
	/*====================*/
	bool Which(int x)
	{
		return ch[fa[x]][1] == x;
	}
	bool IsRoot(int x)
	{
		return ch[fa[x]][Which(x)] != x;
	}
	/*====================*/
	void PushUp(int x)
	{
		/*PushUp*/
	}
	void PushAll(int x)
	{
		if (!IsRoot(x))
		{
			PushAll(fa[x]);
		}
		PushDown(x);
	}
	void PushDown(int x)
	{
		if (rev[x])
		{
			swap(ch[x][0], ch[x][1]);
			rev[ch[x][0]] ^= 1;
			rev[ch[x][1]] ^= 1;
			rev[x] = 0;
		}
		/*PushDown*/
	}
	/*====================*/
	void Rotate(int x)
	{
		int y = fa[x], z = fa[y], w = Which(x);
		if (!IsRoot(y)) ch[z][Which(y)] = x; fa[x] = z;
		ch[y][w] = ch[x][w ^ 1];
		if (ch[y][w]) fa[ch[y][w]] = y;
		ch[x][w ^ 1] = y; fa[y] = x;
		PushUp(y); PushUp(x);
	}
	void Splay(int x)
	{
		PushAll(x);
		for (; !IsRoot(x); Rotate(x))
		{
			if (!IsRoot(fa[x]))
			{
				Rotate(Which(x) == Which(fa[x]) ? fa[x] : x);
			}
		}
	}
	/*====================*/
	void Access(int x)
	{
		for (int p = 0; x; p = x, x = fa[x])
		{
			Splay(x), ch[x][1] = p, PushUp(x);
		}
	}
	/*====================*/
	int FindRoot(int x)
	{
		Access(x); Splay(x);
		while (ch[x][0]) x = ch[x][0];
		Splay(x); return x;
	}
	void MakeRoot(int x)
	{
		Access(x); Splay(x); rev[x] ^= 1;
	}
	/*====================*/
	void Cut(int u, int v)
	{
		Split(u, v);
		if (fa[u] == v && !ch[u][1])
		{
			ch[v][0] = fa[u] = 0;
		}
	}
	void Link(int u, int v)
	{
		MakeRoot(u); fa[u] = v;
	}
	/*====================*/
	void Split(int u, int v)
	{
		MakeRoot(u); Access(v); Splay(v);
	}
    /*====================*/
	int LCA(int u, int v)
	{
		Access(u); int ans = 0;
		for (int child = 0; v; child = v, v = fa[v])
		{
			Splay(v); ch[v][1] = child; ans = v;
		}
		return ans;
	}
}LCT;

LCA

树剖法

class _LCA
{
public:
	~_LCA(void)
	{
		delete[] node;
	}
	int operator()(int u, int v)
	{
		while (node[u].top != node[v].top)
		{
			int topu = node[u].top;
			int topv = node[v].top;
			if (node[topu].dep > node[topv].dep)
			{
				u = node[topu].pre;
			}
			else
			{
				v = node[topv].pre;
			}
		}
		return node[u].dep > node[v].dep ? v : u;
	}
	void init(int n, vector<int>G[], int root = 1)
	{
		this->G = G;
		this->root = root;
		node = new Node[n + 1];
		DFS1(root, root); DFS2(root, root);
	}
private:
	struct Node
	{
		int pre = -1;
		int dep = +0;
		int siz = +1;
		int son = -1;
		int top = -1;
	};
	/*====================*/
	int root = -1;
	Node* node = NULL;
	vector<int>* G = NULL;
	/*====================*/
	void DFS1(int pre, int cur)
	{
		node[cur].pre = pre;
		node[cur].dep = node[pre].dep + 1;
		for (auto nxt : G[cur])
		{
			if (nxt != pre)
			{
				DFS1(cur, nxt);
				node[cur].siz += node[nxt].siz;
				if (node[cur].son == -1)
				{
					node[cur].son = nxt;
				}
				else if (node[nxt].siz > node[node[cur].son].siz)
				{
					node[cur].son = nxt;
				}
			}
		}
	}
	void DFS2(int cur, int top)
	{
		node[cur].top = top;
		if (node[cur].son != -1)
		{
			DFS2(node[cur].son, top);
			for (auto nxt : G[cur])
			{
				if (nxt == node[cur].pre)continue;
				if (nxt == node[cur].son)continue;
				DFS2(nxt, nxt);
			}
		}
	}
};

ST表法

class _LCA
{
public:
	int operator()(int u, int v)
	{
		if (u == v)return u;
		if ((u = dfn[u]) > (v = dfn[v]))swap(u, v);
		int d = log2[v - u++];
		return Get(st[d][u], st[d][v - (1 << d) + 1]);
	}
	void init(int n, vector<int>G[], int root = 1)
	{
		this->G = G; dfn[0] = 0;
		/*====================*/
		log2[0] = -1;
		for (int i = 1; i <= n; ++i)
		{
			log2[i] = log2[i >> 1] + 1;
		}
		/*====================*/
		DFS(0, root);
		for (int i = 1; i <= log2[n]; i++)
		{
			for (int j = 1; j + (1 << i) - 1 <= n; j++)
			{
				st[i][j] = Get(st[i - 1][j], st[i - 1][j + (1 << i - 1)]);
			}
		}
	}
private:
	int dfn[N];
	int log2[N];
	int st[19][N];
	vector<int>* G;
	/*====================*/
	void DFS(int pre, int cur)
	{
		st[0][dfn[cur] = ++dfn[0]] = pre;
		for (auto nxt : G[cur])
		{
			if (nxt != pre)
			{
				DFS(cur, nxt);
			}
		}
	}
	int Get(int x, int y)
	{
		return dfn[x] < dfn[y] ? x : y;
	}
}lca;

树哈希

class Tree_Hash
{
public:
	int operator()(vector<int>G[], int root)
	{
		this->G = G;
		return DFS(root, root);
	}
private:
	vector<int>* G = NULL;
	map<vector<int>, int>mp;
	int DFS(int pre, int cur)
	{
		vector<int>vec;
		for (auto nxt : G[cur])
		{
			if (nxt != pre)
			{
				vec.push_back(DFS(cur, nxt));
			}
		}
		sort(vec.begin(), vec.end());
		if (mp.find(vec) == mp.end())
		{
			mp[vec] = mp.size();
		}
		return mp[vec];
	}
};

树分治

点分治

class _TCD
{
public:
	~_TCD(void)
	{
		delete[] siz;
		delete[] rooted;
	}
	void init(int n, vector<int>G[])
	{
		this->G = G;
		siz = new int[n + 10];
		rooted = new bool[n + 10];
		for (int i = 0; i < n + 10; ++i)
		{
			siz[i] = 0, rooted[i] = false;
		}
		DividTree(Centroid(1, n));
	}
private:
	vector<int>* G = NULL;
	/*====================*/
	int* siz = NULL;
	bool* rooted = NULL;
	/*====================*/
	int centroid, all_part;
	/*====================*/
	int Centroid(int cur, int all)
	{
		centroid = -1; all_part = all;
		DFS(cur, cur, all); return centroid;
	}
	void DFS(int pre, int cur, int all)
	{
		siz[cur] = 1; int cur_part = 0;
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = G[cur][i];
			if (nxt == pre)continue;
			if (rooted[nxt])continue;
			DFS(cur, nxt, all);
			siz[cur] += siz[nxt];
			cur_part = max(cur_part, siz[nxt]);
		}
		cur_part = max(cur_part, all - siz[cur]);
		if (cur_part < all_part)
		{
			all_part = cur_part, centroid = cur;
		}
	}
	/*====================*/
	void CalcSon(int pre, int cur)
	{
		/*
			添加cur到右树tree中
		*/
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = G[cur][i];
			if (nxt == pre)continue;
			if (rooted[nxt])continue;
			/*=====================*/
			CalcSon(cur, nxt);
		}
	}
	void CalcRoot(int root)
	{
		/*
			初始化左库lib
		*/
		for (int i = 0; i < G[root].size(); ++i)
		{
			int son = G[root][i];
			if (!rooted[son])
			{
				/*
					初始化右树tree
				*/
				CalcSon(son, son);
				/*
					遍历右树tree匹配左库lib
				*/
				/*
					添加右树tree到左库lib
				*/
			}
		}
	}
	/*====================*/
	void DividTree(int root)
	{
		rooted[root] = true; CalcRoot(root);
		for (int i = 0; i < G[root].size(); ++i)
		{
			int son = G[root][i];
			if (!rooted[son])
			{
				DividTree(Centroid(son, siz[son]));
			}
		}
	}
};

K级祖先

class C_KthAncestor
{
private:
	struct Node
	{
		int pre = -1;
		int dep = +0;
		int siz = +1;
		int son = -1;
		int top = -1;
		int dfn = +0;
		int idx = +0;
	};
	/*====================*/
	int cnt = 0;
	int root = -1;
	vector<Node>node;
	vector<int>* G = NULL;
	/*====================*/
	void DFS1(int pre, int cur)
	{
		node[cur].pre = pre;
		node[cur].dep = node[pre].dep + 1;
		for (auto nxt : G[cur])
		{
			if (nxt != pre)
			{
				DFS1(cur, nxt);
				node[cur].siz += node[nxt].siz;
				if (node[cur].son == -1)
				{
					node[cur].son = nxt;
				}
				else if (node[nxt].siz > node[node[cur].son].siz)
				{
					node[cur].son = nxt;
				}
			}
		}
	}
	void DFS2(int cur, int top)
	{
		node[cur].top = top;
		node[cur].dfn = ++cnt;
		node[cnt].idx = cur;
		if (node[cur].son != -1)
		{
			DFS2(node[cur].son, top);
			for (auto nxt : G[cur])
			{
				if (nxt == node[cur].pre)continue;
				if (nxt == node[cur].son)continue;
				DFS2(nxt, nxt);
			}
		}
	}
public:
	int operator()(int x, int k)
	{
		int topx = node[x].top;
		while (k > 0)
		{
			topx = node[x].top;
			if (node[x].dep - node[topx].dep < k)
			{
				k -= node[x].dep - node[topx].dep + 1;
				x = node[topx].pre;
			}
			else
			{
				x = node[node[x].dfn - k].idx; k = 0;
			}
		}
		return x;
	}
	int Deep(int x)
	{
		return node[x].dep;
	}
	void Init(int n, vector<int>G[], int root = 1)
	{
		this->G = G;
		this->root = root;
		node.assign(n + 1, Node());
		DFS1(root, root); DFS2(root, root);
	}
};

树链剖分

重链剖分

struct Node
{
	int pre, dep, siz, son;
	int top, dfn, idx;
	int val;
	Node(void)
	{
		pre = -1; dep = +0;
		siz = +1; son = -1;
		top = -1; dfn = +0;
		idx = +0; val = +0;
	}
};
/*====================*/
Node node[N];
/*====================*/
class HLD
{
public:
	void operator()(vector<int>G[], int root = 1)
	{
        cnt = 0;
		this->G = G; this->root = root;
		DFS1(root, root); DFS2(root, root);
	}
private:
	int cnt = 0;
	int root = -1;
	vector<int>* G = NULL;
	/*====================*/
	void DFS1(int pre, int cur)
	{
		node[cur].pre = pre;
		node[cur].dep = node[pre].dep + 1;
		for (int i = 0; i < G[cur].size(); ++i)
		{
			int nxt = G[cur][i];
			if (nxt != pre)
			{
				DFS1(cur, nxt); node[cur].siz += node[nxt].siz;
				if (node[cur].son == -1)
				{
					node[cur].son = nxt;
				}
				else if (node[nxt].siz > node[node[cur].son].siz)
				{
					node[cur].son = nxt;
				}
			}
		}
	}
	void DFS2(int cur, int top)
	{
		node[cur].top = top;
		node[cur].dfn = ++cnt;
		node[cnt].idx = cur;
		if (node[cur].son != -1)
		{
			DFS2(node[cur].son, top);
			for (int i = 0; i < G[cur].size(); ++i)
			{
				int nxt = G[cur][i];
				if (nxt == node[cur].pre)continue;
				if (nxt == node[cur].son)continue;
				DFS2(nxt, nxt);
			}
		}
	}
};

树的重心

class Centroid
{
public:
	int operator()(int n, vector<int>G[])
	{
		this->G = G;
		siz = new int[n + 1];
		centroid = -1;
		all_part = n;
		DFS(1, 1, n);
		delete[] siz;
		return centroid;
	}
private:
	int* siz = NULL;
	int all_part = 0;
	int centroid = -1;
	vector<int>* G = NULL;
	/*====================*/
	void DFS(int pre, int cur, int all)
	{
		siz[cur] = 1;
		int cur_part = 0;
		for (auto nxt : G[cur])
		{
			if (nxt != pre)
			{
				DFS(cur, nxt, all);
				siz[cur] += siz[nxt];
				cur_part = max(cur_part, siz[nxt]);
			}
		}
		cur_part = max(cur_part, all - siz[cur]);
		if (cur_part < all_part)
		{
			all_part = cur_part, centroid = cur;
		}
	}
};

树上路径求交

假设当前要求路径 \((a,b)\) 和 \((c,d)\) 的交。
设 \(d_x\) 表示 \(x\) 的深度。
先求出 \(p[4]={lca(a,c),lca(a,d),lca(b,c),lca(b,d)}\)。
将 \(p\) 数组按深度排序,取出深度较大的两个,记为 \(p0,p1\)。
若存在交,则 \((p0,p1)\) 即所求。
现在只需要判断路径是否有交。
若 \(p0\neq p1\),则一定有交。
否则若 \(d_{p0}=\max(d_{lca(a,b)},d_{lca(c,d)})\),也有交。
否则路径不相交。

树上启发式合并

对于以 u 为根的子树

①. 先统计它轻子树(轻儿子为根的子树)的答案,统计完后删除信息

②. 再统计它重子树(重儿子为根的子树)的答案,统计完后保留信息

③. 然后再将重子树的信息合并到 u上

④. 再去遍历 u 的轻子树,然后把轻子树的信息合并到 u 上

⑤. 判断 u 的信息是否需要传递给它的父节点(u 是否是它父节点的重儿子)

void DFS(int root, int cur)
{
	cnt[node[cur].val]++;
	if (cnt[node[cur].val] > maxcnt)
	{
		ans[root] = node[cur].val;
		maxcnt = cnt[node[cur].val];
	}
	else if (cnt[node[cur].val] == maxcnt)
	{
		ans[root] += node[cur].val;
	}
	for (auto nxt : G[cur])
	{
		if (nxt == node[cur].pre)continue;
		if (nxt == node[root].son)continue;
		DFS(root, nxt);
	}
}
void DSU(int cur, bool keep)
{
	for (auto nxt : G[cur])
	{
		if (nxt == node[cur].pre)continue;
		if (nxt == node[cur].son)continue;
		DSU(nxt, false);
	}
	if (node[cur].son != -1)DSU(node[cur].son, true);
	if (node[cur].son != -1)
	{
		ans[cur] = ans[node[cur].son];
	}
	DFS(cur, cur);
	if (keep == false)
	{
		maxcnt = 0;
		for (int i = node[cur].dfn; i < node[cur].dfn + node[cur].siz; ++i)
		{
			cnt[node[node[i].idx].val]--;
		}
	}
}

数学

逆元

快速幂法

class INV
{
public:
	void init(int P)
	{
		this->P = P;
	}
	int operator[](int x)
	{
		return Pow(x % P, P - 2);
	}
private:
	int P = 0;
	/*====================*/
	int Pow(int a, int b)
	{
		int res = 1;
		while (b)
		{
			if (b & 1)
			{
				res = (res * a) % P;
			}
			b >>= 1, a = (a * a) % P;
		}
		return res;
	}
};

线性递推法

class INV
{
public:
	~INV(void)
	{
		delete[] inv;
	}
	int operator[](int x)
	{
		return inv[x];
	}
	void init(int n, int P)
	{
		inv = new int[n + 1];
		inv[0] = 0, inv[1] = 1;
		for (int i = 2; i <= n; ++i)
		{
			inv[i] = (P - P / i) * inv[P % i] % P;
		}
	}
private:
	int* inv = NULL;
};

扩展欧几里得法

class INV
{
public:
	void init(int P)
	{
		this->P = P;
	}
	int operator[](int x)
	{
		int a, b;
		exgcd(x, P, a, b);
		return (a % P + P) % P;
	}
private:
	int P = 0;
	/*====================*/
	void exgcd(int a, int b, int& x, int& y)
	{
		if (b == 0)
		{
			x = 1, y = 0;
		}
		else
		{
			exgcd(b, a % b, y, x);
			y -= a / b * x;
		}
	}
};

质数

欧拉筛法

class Prime
{
public:
	~Prime(void)
	{
		delete[] vis;
		delete[] table;
	}
	int size(void)
	{
		return cnt;
	}
	void init(int n)
	{
		Euler(n);
	}
	bool operator()(int x)
	{
		return vis[x];
	}
	int operator[](int x)
	{
		return table[x];
	}
private:
	int cnt = 0;
	bool* vis = NULL;
	int* table = NULL;
	/*====================*/
	void Euler(int n)
	{
		vis = new bool[n + 1];
		table = new int[n + 1];
		for (int i = 0; i <= n; ++i)
		{
			vis[i] = true;
		}
		vis[0] = vis[1] = false;
		for (int i = 2; i <= n; ++i)
		{
			if (vis[i])table[++cnt] = i;
			for (int j = 1; j <= cnt; ++j)
			{
				if (i * table[j] > n)break;
				vis[i * table[j]] = false;
				if (i % table[j] == 0)break;
			}
		}
	}
};

六倍试除法

class Prime
{
public:
	bool operator()(int x)
	{
		if (x <= 1)return false;
		if (x == 2 || x == 3 || x == 5)return true;
		if (x % 2 == 0 || x % 3 == 0)return false;
		for (int i = 5; i * i <= x; i += 6)
		{
			if (x % i == 0 || x % (i + 2) == 0)
			{
				return false;
			}
		}
		return true;
	}
};

Miller-Rabin

class Prime
{
public:
	bool operator()(lnt x)
	{
		if (x < 3 || x % 2 == 0) return x == 2;
		lnt a = x - 1, b = 0;
		while (a % 2 == 0) a /= 2, ++b;
		//lnt lib[] = { 2,7,61 };
		lnt lib[] = { 2,325,9375,28178,450775,9780504,1795265022 };
		for (lnt r : lib)
		{
			lnt v = Pow(r, a, x);
			if (v == 1 || v == x - 1 || v == 0) continue;
			for (lnt j = 1; j <= b; j++)
			{
				v = Mul(v, v, x);
				if (v == x - 1 && j != b) { v = 1; break; }
				if (v == 1) return false;
			}
			if (v != 1) return false;
		}
		return true;
	}
private:
	lnt Mul(lnt a, lnt b, lnt p)
	{
		lnt res = 0;
		while (b != 0)
		{
			if (b % 2 == 1)
			{
				res = (res + a) % p;
			}
			b /= 2, a = (a * 2) % p;
		}
		return res;
	}
	lnt Pow(lnt a, lnt b, lnt p)
	{
		lnt res = 1;
		while (b != 0)
		{
			if (b % 2 == 1)
			{
				res = Mul(res, a, p);
			}
			b /= 2, a = Mul(a, a, p);
		}
		return res;
	}
};

快速幂

int Pow(int a, int b, int p)
{
    int res = 1;
    while (b)
    {
        if (b & 1)
        {
            res = (res * a) % p;
        }
        b >>= 1, a = (a * a) % p;
    }
    return res;
}

龟速乘

int Mul(int a, int b, int p)
{
    int res = 0;
    while (b)
    {
        if (b & 1)
        {
            res = (res + a) % p;
        }
        b >>= 1, a = (a * 2) % p;
    }
    return res;
}
lnt Mul(lnt a, lnt b, lnt p)
{
	return (a * b - (lnt)(a / (long double)p * b + 1e-3) * p + p) % p;
}

逆序对

template<class Type>
class _CountInversions
{
public:
	lnt operator()(int n, Type arr[])
	{
		res = 0;
		a = new Type[n + 1];
		temp = new Type[n + 1];
		for (int i = 1; i <= n; ++i)
		{
			a[i] = arr[i];
		}
		MergeSort(1, n);
		delete[] a; delete[] temp;
		return res;
	}
private:
	Type* a = NULL;
	lnt res = 0;
	Type* temp = NULL;
	/*====================*/
	void MergeSort(int l, int r)
	{
		if (l < r)
		{
			int i = l;
			int mid = (l + r) >> 1;
			int p = l, q = mid + 1;
			MergeSort(l, mid + 0);
			MergeSort(mid + 1, r);
			while (p <= mid && q <= r)
			{
				if (a[p] <= a[q])
				{
					temp[i++] = a[p++];
				}
				else
				{
					temp[i++] = a[q++];
					res += (lnt)(mid - p + 1);
				}
			}
			while (p <= mid)temp[i++] = a[p++];
			while (q <= r)	temp[i++] = a[q++];
			for (i = l; i <= r; i++)a[i] = temp[i];
		}
	}
};

多项式

快速傅里叶变换

typedef complex<double> Comp;

const ll SIZE = 4000000 + 10;
const double PI = acos(-1.0);

Comp temp[SIZE];
void FFT(Comp* p, ll len, ll inv)//inv=+1 FFT;inv=-1 IFFT
{
	if (len == 1) return;
	const int E = 0, O = len / 2;
	for (ll i = 0; i < len; ++i) temp[i] = p[i];
	for (ll i = 0; i < len; ++i)
	{
		if ((i & 1) == 1)p[i / 2 + O] = temp[i];
		if ((i & 1) == 0)p[i / 2 + E] = temp[i];
	}
	Comp* pe = p + E; FFT(pe, len / 2, inv);
	Comp* po = p + O; FFT(po, len / 2, inv);
	Comp omega(1, 0);
	const double Angle = 2 * PI / len;
	const Comp step(cos(Angle), sin(inv * Angle));
	for (ll k = 0; k < len / 2; ++k, omega *= step)
	{
		temp[k + E] = pe[k] + omega * po[k];
		temp[k + O] = pe[k] - omega * po[k];
	}
	for (ll i = 0; i < len; ++i) p[i] = temp[i];
}

离散对数

ll BSGS(ll a, ll b, ll m)
{
    static unordered_map<ll, ll> hs;
    hs.clear();
    ll cur = 1, t = sqrt(m) + 1;
    for (int B = 1; B <= t; ++B)
    {
        (cur *= a) %= m;
        hs[b * cur % m] = B; // 哈希表中存B的值
    }
    ll now = cur; // 此时cur = a^t
    for (int A = 1; A <= t; ++A)
    {
        auto it = hs.find(now);
        if (it != hs.end())
            return A * t - it->second;
        (now *= cur) %= m;
    }
    return -1; // 没有找到,无解
}

欧拉函数

试除法

class PHI
{
public:
    int operator[](int x)
    {
        return GetPhi(x);
    }
private:
    int GetPhi(int x) 
    {
        int res = x;
        for (int i = 2; i * i <= x; ++i)
        {
            if (x % i == 0) 
            {
                res = res / i * (i - 1);
                while (x % i == 0) x /= i;
            }
        }
        if (x > 1) res = res / x * (x - 1);
        return res;
    }
};

欧拉筛法

class PHI
{
public:
	~PHI(void)
	{
		delete[] phi;
	}
	void init(int n)
	{
		GetPhi(n);
	}
	int operator[](int x)
	{
		return phi[x];
	}
private:
	int* phi = NULL;
	void GetPhi(int n)
	{
		phi = new int[n + 1];
		bool* vis = new bool[n + 1];
		int* table = new int[n + 1];
		for (int i = 0; i <= n; ++i)
		{
			vis[i] = true;
		}
		int cnt = 0; phi[1] = 1;
		for (int i = 2; i <= n; ++i)
		{
			if (vis[i])
			{
				phi[i] = i - 1;
				table[++cnt] = i;
			}
			for (int j = 1; j <= cnt; ++j)
			{
				if (i * table[j] > n)break;
				vis[i * table[j]] = false;
				if (i % table[j] == 0)
				{
					phi[i * table[j]] = phi[i] * table[j]; break;
				}
				else
				{
					phi[i * table[j]] = phi[i] * (table[j] - 1);
				}
			}
		}
		delete[] vis; delete[] table;
	}
};

欧拉降幂

class EX_Euler
{
public:
	int operator()(int a, string s, int p)
	{
		int b = 0;
		bool flag = false;
		int phi = GetPhi(p);
		for (auto c : s)
		{
			b = (b * 10 + c - '0');
			if (b >= phi)flag = true, b %= phi;
		}
		if (flag)b += phi; return Pow(a % p, b, p);
	}
private:
	int GetPhi(int x)
	{
		int res = x;
		for (int i = 2; i * i <= x; ++i)
		{
			if (x % i == 0)
			{
				res = res / i * (i - 1);
				while (x % i == 0) x /= i;
			}
		}
		if (x > 1) res = res / x * (x - 1);
		return res;
	}
	int Pow(int a, int b, int p)
	{
		int res = 1;
		while (b != 0)
		{
			if (b % 2 == 1)
			{
				res = (res * a) % p;
			}
			b /= 2, a = (a * a) % p;
		}
		return res;
	}
};

欧几里得

最大公因数

int gcd(int a, int b)
{
	return b == 0 ? a : gcd(b, a % b);
}

最小公倍数

int lcm(int a, int b)
{
	return a / gcd(a, b) * b;
}

扩展欧几里得

void exgcd(int a, int b, int& x, int& y)
{
	if (b == 0)
	{
		x = 1, y = 0;
	}
	else
	{
		exgcd(b, a % b, y, x);
		y -= a / b * x;
	}
}

分解质因数

欧拉筛优化

void PFF(int x, vector<int>& num, vector<int>& cnt)
{
	for (int i = 1; i <= prime.size(); ++i)
	{
		if (prime[i] * prime[i] > x)break;
		if (x % prime[i] == 0)
		{
			num.push_back(prime[i]);
			cnt.push_back(0);
			while (x % prime[i] == 0)
			{
				cnt.back()++;
				x /= prime[i];
			}
		}
	}
	if (x != 1)
	{
		num.push_back(x);
		cnt.push_back(1);
	}
}

Pollard_Rho

class Pollard_Rho
{
public:
	void operator()(lnt X, vector<lnt>& num, vector<lnt>& cnt)
	{
		GetAllFactor(X, num);
		unordered_map<lnt, lnt>cntp; for (auto p : num)cntp[p]++;
		sort(num.begin(), num.end()); num.erase(unique(num.begin(), num.end()), num.end());
		for (auto p : num)cnt.push_back(cntp[p]);
	}
private:
	lnt gcd(lnt a, lnt b)
	{
		return b == 0 ? a : gcd(b, a % b);
	}
	lnt Mul(lnt a, lnt b, lnt p)
	{
		return (__int128)a * b % p;
	}
	lnt Pow(lnt a, lnt b, lnt p)
	{
		lnt res = 1;
		while (b != 0)
		{
			if (b % 2 == 1)
			{
				res = Mul(res, a, p);
			}
			b /= 2, a = Mul(a, a, p);
		}
		return res;
	}
	bool Check(lnt x)
	{
		if (x < 3 || x % 2 == 0) return x == 2;
		lnt a = x - 1, b = 0;
		while (a % 2 == 0) a /= 2, ++b;
		//lnt lib[] = { 2,7,61 };
		lnt lib[] = { 2,325,9375,28178,450775,9780504,1795265022 };
		for (lnt r : lib)
		{
			lnt v = Pow(r, a, x);
			if (v == 1 || v == x - 1 || v == 0) continue;
			for (lnt j = 1; j <= b; j++)
			{
				v = Mul(v, v, x);
				if (v == x - 1 && j != b) { v = 1; break; }
				if (v == 1) return false;
			}
			if (v != 1) return false;
		}
		return true;
	}
	lnt GetFactor(lnt X)
	{
		if (X == 4)return 2;
		if (Check(X))return X;
		mt19937 rng(time(NULL));
		while (1)
		{
			lnt c = rng() % (X - 1) + 1;
			auto f = [=](lnt x) { return ((__int128)x * x + c) % X; };
			lnt t = 0, r = 0, p = 1, q;
			do
			{
				for (int i = 0; i < 128; ++i)
				{
					t = f(t), r = f(f(r));
					if (t == r || (q = (__int128)p * abs(t - r) % X) == 0)break;
					p = q;
				}
				lnt d = gcd(p, X); if (d > 1)return d;
			} while (t != r);
		}
	}
	void GetAllFactor(lnt X, vector<lnt>& lib)
	{
		lnt fac = GetFactor(X);
		if (fac == X)lib.push_back(fac);
		else GetAllFactor(fac, lib), GetAllFactor(X / fac, lib);
	}
}PFF;

获得全部因数

void GetDivisor(int x, vector<int>& divisor)
{
	vector<int>num, cnt; 
	PFF(x, num, cnt);
	divisor.push_back(1);
	for (int i = 0; i < num.size(); ++i)
	{
		int val = 1;
		int lim = divisor.size();
		for (int j = 1; j <= cnt[i]; ++j)
		{
			val *= num[i];
			for (int k = 0; k < lim; ++k)
			{
				divisor.push_back(divisor[k] * val);
			}
		}
	}
}

随机数生成器

mt19937 Rand(random_device{}());

枚举

排列

全排列

void AllPermutation(int l, int r)
{
	vector<int>p;
	for (int i = l; i <= r; ++i)
	{
		p.push_back(i);
	}
	do
	{
		//do something
	} while (next_permutation(p.begin(), p.end()));
}

子集

枚举全部子集

void AllSubset(int s)
{
	for (int i = s; i; i = (i - 1) & s)
	{
		//do something
	}
}

枚举k大小子集

void GospersHack(int k, int n)
{
	int cur = (1 << k) - 1, limit = (1 << n);
	while (cur < limit)
	{
		// do something
		int lb = cur & -cur, r = cur + lb;
		cur = (((r ^ cur) >> 2) / lb) | r;
	}
}

随机化

模拟退火

#include<bits/stdc++.h>
using namespace std;
/*====================*/
#define endl "\n"
/*====================*/
typedef long long lnt;
/*====================*/
const int N = 1e3 + 10;
/*====================*/
double begintime = 0;
bool TLE(void)
{
	if ((clock() - begintime) / CLOCKS_PER_SEC > 0.9)
	{
		return true;
	}
	return false;
}
/*====================*/
int n;
/*====================*/
struct Node
{
	double w, x, y;
	Node(double _w = 0, double _x = 0, double _y = 0)
	{
		w = _w, x = _x, y = _y;
	}
};
Node node[N];
/*====================*/
double ansx, ansy, ansSigma = 1e18;
/*====================*/
double GetSigma(double x, double y)
{
	double res = 0;
	for (int i = 1; i <= n; ++i)
	{
		double dx = node[i].x - x;
		double dy = node[i].y - y;
		res += sqrt(dx * dx + dy * dy) * node[i].w * 100;
	}
	if (res < ansSigma)
	{
		ansx = x, ansy = y, ansSigma = res;
	}
	return res;
}
/*====================*/
double Rand() { return (double)rand() / RAND_MAX; }
/*====================*/
void SA(void)
{
	double curx = 0, cury = 0, curSigma = 0;
	for (int i = 1; i <= n; ++i)
	{
		curx += node[i].x, cury += node[i].y;
	}
	curx /= n, cury /= n; curSigma = GetSigma(curx, cury);

	double t = 1e4;
	while (t > 5e-4)
	{
		double nxtx = curx + t * (Rand() * 2.0 - 1.0);
		double nxty = cury + t * (Rand() * 2.0 - 1.0);
		double nxtSigma = GetSigma(nxtx, nxty);
		double delta = nxtSigma - curSigma;
		if (exp(-delta / t) > Rand())
		{
			curx = nxtx, curx = nxty, curSigma = nxtSigma;
		}
		t *= 0.9996;
	}
	for (int i = 1; i <= 5000; ++i) 
	{
		double nxtx = ansx + t * (Rand() * 2 - 1);
		double nxty = ansy + t * (Rand() * 2 - 1);
		double nxtSigma = GetSigma(nxtx, nxty);
	}
}
/*====================*/
void Solve(void)
{
	cin >> n;
	for (int i = 1; i <= n; ++i)
	{
		double w, x, y;
		cin >> x >> y >> w;
		node[i] = Node(w, x, y);
	}
	while (!TLE())SA();
	printf("%.3f %.3f\n", ansx, ansy);
}
/*====================*/
int main()
{
#ifndef ONLINE_JUDGE
	freopen("IN.txt", "r+", stdin);
#endif
	srand(time(0)); begintime = clock();
	ios::sync_with_stdio(false);
	cin.tie(NULL), cout.tie(NULL);
	int T = 1; //cin >> T;
	while (T--)Solve();
	return 0;
}

字符串

Hash

单Hash

class C_Hash
{
private:
	static const lnt MOD = 998244353;
	/*====================*/
	vector<lnt>powbase, invbase, sumhash;
	/*====================*/
	lnt Pow(lnt a, lnt b)
	{
		lnt res = 1;
		while (b)
		{
			if (b & 1)
			{
				res = res * a % MOD;
			}
			b >>= 1, a = a * a % MOD;
		}
		return res;
	}
public:
	void Init(const string& str, lnt base = 233)
	{
		powbase.assign(str.size(), 0);
		invbase.assign(str.size(), 0);
		sumhash.assign(str.size(), 0);
		/*====================*/
		for (int i = 0; i < str.size(); ++i)
		{
			if (i == 0)powbase[i] = 1;
			else powbase[i] = powbase[i - 1] * base % MOD;
		}
		base = Pow(base % MOD, MOD - 2);
		for (int i = 0; i < str.size(); ++i)
		{
			if (i == 0)invbase[i] = 1;
			else invbase[i] = invbase[i - 1] * base % MOD;
		}
		/*====================*/
		for (int i = 0; i < str.size(); ++i)
		{
			if (i == 0)sumhash[i] = str[i] * powbase[i] % MOD;
			else sumhash[i] = (sumhash[i - 1] + str[i] * powbase[i]) % MOD;
		}
	}
	lnt operator()(int l, int r)
	{
		return (sumhash[r] - (l > 0 ? sumhash[l - 1] : 0) + MOD) * invbase[l] % MOD;
	}
};

双Hash

class C_DoubleHash
{
private:
	class C_Hash
	{
	private:
		static const lnt MOD = 998244353;
		/*====================*/
		vector<lnt>powbase, invbase, sumhash;
		/*====================*/
		lnt Pow(lnt a, lnt b)
		{
			lnt res = 1;
			while (b)
			{
				if (b & 1)
				{
					res = res * a % MOD;
				}
				b >>= 1, a = a * a % MOD;
			}
			return res;
		}
	public:
		void Init(const string& str, lnt base = 233)
		{
			powbase.assign(str.size(), 0);
			invbase.assign(str.size(), 0);
			sumhash.assign(str.size(), 0);
			/*====================*/
			for (int i = 0; i < str.size(); ++i)
			{
				if (i == 0)powbase[i] = 1;
				else powbase[i] = powbase[i - 1] * base % MOD;
			}
			base = Pow(base % MOD, MOD - 2);
			for (int i = 0; i < str.size(); ++i)
			{
				if (i == 0)invbase[i] = 1;
				else invbase[i] = invbase[i - 1] * base % MOD;
			}
			/*====================*/
			for (int i = 0; i < str.size(); ++i)
			{
				if (i == 0)sumhash[i] = str[i] * powbase[i] % MOD;
				else sumhash[i] = (sumhash[i - 1] + str[i] * powbase[i]) % MOD;
			}
		}
		lnt operator()(int l, int r)
		{
			return (sumhash[r] - (l > 0 ? sumhash[l - 1] : 0) + MOD) * invbase[l] % MOD;
		}
	};
	C_Hash Hash1, Hash2;
public:
	void Init(const string& str, lnt base1 = 233, lnt base2 = 19260817)
	{
		Hash1.Init(str, base1);
		Hash2.Init(str, base2);
	}
	pair<lnt, lnt> operator()(int l, int r)
	{
		return { Hash1(l,r),Hash2(l,r) };
	}
};

Split

vector<string> Split(string str, char split)
{
	vector<string>res;
	istringstream iss(str); string token;
	while (getline(iss, token, split))
	{
		if (token != "")
		{
			res.push_back(token);
		}
	}
	return res;
}

Z函数

vector<int> Z_Function(const string& str)
{
	int n = str.size() - 1;
	vector<int>z(str.size());
	int l = 1, r = 1; z[1] = n;
	for (int i = 2; i <= n; ++i)
	{
		z[i] = (i <= r ? min(z[i - l + 1], r - i + 1) : 0);
		while (i + z[i] <= n && str[1 + z[i]] == str[i + z[i]])z[i]++;
		if (i + z[i] - 1 > r)r = i + z[i] - 1, l = i;
	}
	return z;
}

字典树

Trie

class Trie
{
public:
	void Init(int sigma_s, int size_s = 128)
	{
		cnt = 0; root = ++cnt;
		siz.assign(sigma_s + 2, 0);
		trie.assign(sigma_s + 2, vector<int>(size_s + 1));
	}
	void Insert(const string& str)
	{
		int cur = root; siz[cur]++;
		for (int i = 0; i < str.size(); ++i)
		{
			if (trie[cur][str[i]] == 0)
			{
				trie[cur][str[i]] = ++cnt;
			}
			siz[cur = trie[cur][str[i]]]++;
		}
	}
	int Query(const string& str)
	{
		int cur = root;
		for (int i = 0; i < str.size(); ++i)
		{
			if (trie[cur][str[i]] == 0)
			{
				return 0;
			}
			cur = trie[cur][str[i]];
		}
		return siz[cur];
	}
private:
	int root, cnt;
	vector<int>siz;
	vector<vector<int>>trie;
};

可持久化01Trie

int root[N], tot;
int siz[35 * N];
int trie[35 * N][2];
/*====================*/
void Insert(int pre, int cur, lnt num)
{
	for (int i = 32; i >= 0; --i)
	{
		siz[cur] = siz[pre] + 1;
		int bit = (num & (1ll << i)) ? 1 : 0;
		trie[cur][bit ^ 1] = trie[pre][bit ^ 1], trie[cur][bit] = ++tot;
		pre = trie[pre][bit]; cur = trie[cur][bit];
	}
	siz[cur] = siz[pre] + 1;
}
lnt Query(int cur, lnt num, int k)
{
	lnt ans = 0;
	for (int i = 32; i >= 0; --i)
	{
		int bit = (num & (1ll << i)) ? 1 : 0;
		if (siz[trie[cur][bit ^ 1]] >= k)
		{
			ans += 1ll << i;
			cur = trie[cur][bit ^ 1];
		}
		else
		{
			k -= siz[trie[cur][bit ^ 1]];
			cur = trie[cur][bit];
		}
	}
	return ans;
}

表达式

获取优先级

int GetPriority(char c)
{
	if (c == '*')return 0;
	if (c == '+')return -1;
	return -2;
}

中缀转后缀

string PostfixExpression(string str)
{
	string res;
	stack<char>stk;
	for (auto c : str)
	{
		if (c == '_')
		{
			res.push_back(c);
		}
		if (c == '(' || c == ')')
		{
			if (c == '(')
			{
				stk.push('(');
			}
			if (c == ')')
			{
				while (!stk.empty() && stk.top() != '(')
				{
					res.push_back(stk.top()); stk.pop();
				}
				stk.pop();
			}
		}
		if (c == '+' || c == '*')
		{
			while (!stk.empty() && GetPriority(stk.top()) >= GetPriority(c))
			{
				res.push_back(stk.top()); stk.pop();
			}
			stk.push(c);
		}
	}
	while (!stk.empty())
	{
		res.push_back(stk.top()); stk.pop();
	}
	return res;
}

建立表达式树

struct Node
{
	int val;
	char tag;
	Node* lch, * rch;
	Node(int _val = 0, char _tag = ' ', Node* _lch = NULL, Node* _rch = NULL)
	{
		val = _val, tag = _tag;
		lch = _lch, rch = _rch;
	}
};
Node* Build(string str)
{
	stack<Node*>stk;
	for (auto c : str)
	{
		if (c == '0' || c == '1')
		{
			stk.push(new Node(c - '0', ' ', NULL, NULL));
		}
		else
		{
			Node* rch = stk.top(); stk.pop();
			Node* lch = stk.top(); stk.pop();
			stk.push(new Node(((c == '&') ? (lch->val & rch->val) : (lch->val | rch->val)), c, lch, rch));
		}
	}
	return stk.top();
}

数据结构

莫队

int n, m;
/*====================*/
int S;
struct Query
{
	int l, r, idx;
	Query(int _l = 0, int _r = 0, int _idx = 0)
	{
		l = _l, r = _r, idx = _idx;
	}
	friend bool operator<(const Query& a, const Query& b)
	{
		return (a.l / S == b.l / S) ? (((a.l / S) & 1) ? (a.r > b.r) : (a.r < b.r)) : (a.l < b.l);
	}
}query[M];
/*====================*/
int ans[M];
/*====================*/
void Add(int pos)
{

}
void Del(int pos)
{

}
/*====================*/
void Solve(void)
{
	cin >> n >> m;
	S = n / sqrt(m) + 1;
	for (int i = 1; i <= m; ++i)
	{
		int l, r; cin >> l >> r;
		query[i] = Query(l, r, i);
	}
	sort(query + 1, query + 1 + m);
	int l = 1, r = 0;
	for (int i = 1; i <= m; ++i)
	{
		while (query[i].l < l)Add(--l);
		while (r < query[i].r)Add(++r);
		while (l < query[i].l)Del(l++);
		while (query[i].r < r)Del(r--);
		//获得ans[query[i].idx];
	}
}

猫树

#include<iostream>
using namespace std;

const int N = 1 << 20;
const int LEVEL = 20;

int a[N];
int lg[N];
int pos[N];
int MaoA[LEVEL][N];//最大子段和
int MaoB[LEVEL][N];//最大连续和

inline int ls(int p) { return p << 1; }
inline int rs(int p) { return (p << 1) | 1; }

void Build(int p, int l, int r, int level)
{
	if (l == r) { pos[l] = p; return; }
	int mid = (l + r) >> 1;
	int tempA, tempB;
	//the left
	MaoA[level][mid] = MaoB[level][mid] = a[mid];
	tempA = max(a[mid], 0), tempB = a[mid];
	for (int i = mid - 1; i >= l; --i)
	{
		tempA += a[i]; MaoA[level][i] = max(MaoA[level][i + 1], tempA); tempA = max(tempA, 0);
		tempB += a[i]; MaoB[level][i] = max(MaoB[level][i + 1], tempB);
	}
	//the right
	MaoA[level][mid + 1] = MaoB[level][mid + 1] = a[mid + 1];
	tempA = max(a[mid + 1], 0), tempB = a[mid + 1];
	for (int i = mid + 2; i <= r; ++i)
	{
		tempA += a[i]; MaoA[level][i] = max(MaoA[level][i - 1], tempA); tempA = max(tempA, 0);
		tempB += a[i]; MaoB[level][i] = max(MaoB[level][i - 1], tempB);
	}
	//
	Build(ls(p), l, mid, level + 1); Build(rs(p), mid + 1, r, level + 1);
}
int Ask(int l, int r)
{
	if (l == r)return a[l];
	int level = (lg[pos[l]] - lg[pos[l] ^ pos[r]]);
	return max(max(MaoA[level][l], MaoA[level][r]), MaoB[level][l] + MaoB[level][r]);
}

int main()
{
	int n; cin >> n;
	int len = 1; while (len < n)len <<= 1;
	for (int i = 2; i < N; ++i)lg[i] = lg[i >> 1] + 1;
	for (int i = 1; i <= n; ++i)cin >> a[i];
	Build(1, 1, len, 1);
	int m; cin >> m;
	for (int i = 1; i <= m; ++i)
	{
		int l, r; cin >> l >> r;
		cout << Ask(l, r) << endl;
	}
	return 0;
}

ST表

template<class Type>
class _ST
{
public:
	~_ST(void)
	{
		delete[] log2;
		for (int i = 0; i < logn; ++i)
		{
			delete[] table[i];
		}
		delete[] table;
	}
	Type operator()(int l, int r)
	{
		int d = log2[r - l + 1];
		if (flag)
		{
			return max(table[d][l], table[d][r - (1 << d) + 1]);
		}
		else
		{
			return min(table[d][l], table[d][r - (1 << d) + 1]);
		}
	}
	void init(int n, Type arr[], bool flag)
	{
		this->n = n;
		this->flag = flag;
		while ((1 << logn) <= n)
		{
			logn++;
		}
		table = new Type * [logn];
		for (int i = 0; i < logn; ++i)
		{
			table[i] = new Type[n+1];
		}
		log2 = new int[n + 1]; log2[0] = -1;
		for (int i = 1; i <= n; ++i)
		{
			log2[i] = log2[i >> 1] + 1;
		}
		for (int i = 1; i <= n; ++i)
		{
			table[0][i] = arr[i];
		}
		for (int j = 1; (1 << j) <= n; ++j)
		{
			for (int i = 1; i + (1 << j) - 1 <= n; ++i)
			{
				if (flag)
				{
					table[j][i] = max(table[j - 1][i], table[j - 1][i + (1 << (j - 1))]);
				}
				else
				{
					table[j][i] = min(table[j - 1][i], table[j - 1][i + (1 << (j - 1))]);
				}
			}
		}
	}
private:
	int n = 0;
	int logn = 1;
	int* log2 = NULL;
	Type** table = NULL;
	/*====================*/
#define MAX true
#define MIN false
	bool flag = MIN;
};

扫描线

矩形面积并

namespace ScanLine
{
	const int N = 1e5 + 10;
	/*====================*/
	struct Rectangle
	{
		double x1, y1;
		double x2, y2;
	};
	Rectangle rectangle[N];
	/*====================*/
	vector<double>pos;
	/*====================*/
	struct Line
	{
		int val;
		int l, r; 
		double h;
		Line(int _l = 0, int _r = 0, double _h = 0, int _val = 0)
		{
			l = _l, r = _r, h = _h, val = _val;
		}
		friend bool operator<(const Line& a, const Line& b)
		{
			if (a.h != b.h)
			{
				return a.h < b.h;
			}
			else
			{
				return  a.val > b.val;
			}
		}
	};
	vector<Line>line;
	/*====================*/
	struct Tree
	{
		int l, r;
		int cnt; double len;
	};
	Tree tree[N << 3];
	int ls(int p)
	{
		return p << 1;
	}
	int rs(int p)
	{
		return p << 1 | 1;
	}
	void PushUp(int p)
	{
		if (tree[p].cnt >= 1)
		{
			tree[p].len = pos[tree[p].r] - pos[tree[p].l - 1];
		}
		else
		{
			if (tree[p].l != tree[p].r)
			{
				tree[p].len = tree[ls(p)].len + tree[rs(p)].len;
			}
			else
			{
				tree[p].len = 0;
			}
		}
	}
	void Build(int p, int l, int r)
	{
		tree[p].l = l, tree[p].r = r;
		tree[p].cnt = 0; tree[p].len = 0;
		if (tree[p].l != tree[p].r)
		{
			int mid = (tree[p].l + tree[p].r) >> 1;
			Build(ls(p), l, mid + 0);
			Build(rs(p), mid + 1, r);
		}
	}
	void Change(int p, int l, int r, int d)
	{
		if (l <= tree[p].l && tree[p].r <= r)
		{
			tree[p].cnt += d; PushUp(p);
		}
		else
		{
			int mid = (tree[p].l + tree[p].r) >> 1;
			if (l <= mid)Change(ls(p), l, r, d);
			if (mid < r) Change(rs(p), l, r, d);
			PushUp(p);
		}
	}
	/*====================*/
	double Init(void)
	{
		int n; cin >> n;
		pos.clear(); line.clear();
		for (int i = 1; i <= n; ++i)
		{
			double x1, y1; cin >> x1 >> y1;//左上
			double x2, y2; cin >> x2 >> y2;//右下
			pos.push_back(x1); pos.push_back(x2);
			rectangle[i].x1 = x1; rectangle[i].y1 = y1;
			rectangle[i].x2 = x2; rectangle[i].y2 = y2;
		}
		sort(pos.begin(), pos.end());
		pos.erase(unique(pos.begin(), pos.end()), pos.end());
		for (int i = 1; i <= n; ++i)
		{
			int l = lower_bound(pos.begin(), pos.end(), rectangle[i].x1) - pos.begin();
			int r = lower_bound(pos.begin(), pos.end(), rectangle[i].x2) - pos.begin();
			line.push_back(Line(l, r, rectangle[i].y1, +1));
			line.push_back(Line(l, r, rectangle[i].y2, -1));
		}
		sort(line.begin(), line.end());
		Build(1, 1, pos.size() - 1);
		bool flag = true;
		double ans = 0.0;
		double last = 0.0;
		auto it = line.begin();
		while (it != line.end())
		{
			double high = it->h;
			if (flag)last = high, flag = false;
			ans += (high - last) * tree[1].len;
			while (it != line.end() && it->h == high)
			{
				Change(1, it->l + 1, it->r, it->val); it++;
			}
			last = high;
		}
		return ans;
	}
}

矩形面积交

namespace ScanLine
{
	const int N = 1e5 + 10;
	/*====================*/
	struct Rectangle
	{
		double x1, y1;
		double x2, y2;
	};
	Rectangle rectangle[N];
	/*====================*/
	vector<double>pos;
	/*====================*/
	struct Line
	{
		int val;
		int l, r; 
		double h;
		Line(int _l = 0, int _r = 0, double _h = 0, int _val = 0)
		{
			l = _l, r = _r, h = _h, val = _val;
		}
		friend bool operator<(const Line& a, const Line& b)
		{
			if (a.h != b.h)
			{
				return a.h < b.h;
			}
			else
			{
				return  a.val > b.val;
			}
		}
	};
	vector<Line>line;
	/*====================*/
	struct Tree
	{
		int cnt;
		int l, r;
		double len1;
		double len2;
	};
	Tree tree[N << 3];
	int ls(int p)
	{
		return p << 1;
	}
	int rs(int p)
	{
		return p << 1 | 1;
	}
	void PushUp(int p)
	{
		if (tree[p].cnt >= 1)
		{
			tree[p].len1 = pos[tree[p].r] - pos[tree[p].l - 1];
		}
		else
		{
			if (tree[p].l != tree[p].r)
			{
				tree[p].len1 = tree[ls(p)].len1 + tree[rs(p)].len1;
			}
			else
			{
				tree[p].len1 = 0;
			}
		}
		if (tree[p].cnt >= 2)
		{
			tree[p].len2 = pos[tree[p].r] - pos[tree[p].l - 1];
		}
		else
		{
			if (tree[p].l != tree[p].r)
			{
				if (tree[p].cnt == 1)
				{
					tree[p].len2 = tree[ls(p)].len1 + tree[rs(p)].len1;
				}
				else
				{
					tree[p].len2 = tree[ls(p)].len2 + tree[rs(p)].len2;
				}
			}
			else
			{
				tree[p].len2 = 0;
			}
		}
	}
	void Build(int p, int l, int r)
	{
		tree[p].cnt = 0;
		tree[p].l = l, tree[p].r = r;
		tree[p].len1 = 0; tree[p].len2 = 0;
		if (tree[p].l != tree[p].r)
		{
			int mid = (tree[p].l + tree[p].r) >> 1;
			Build(ls(p), l, mid + 0);
			Build(rs(p), mid + 1, r);
		}
	}
	void Change(int p, int l, int r, int d)
	{
		if (l <= tree[p].l && tree[p].r <= r)
		{
			tree[p].cnt += d; PushUp(p);
		}
		else
		{
			int mid = (tree[p].l + tree[p].r) >> 1;
			if (l <= mid)Change(ls(p), l, r, d);
			if (mid < r) Change(rs(p), l, r, d);
			PushUp(p);
		}
	}
	/*====================*/
	double Init(void)
	{
		int n; cin >> n;
		pos.clear(); line.clear();
		for (int i = 1; i <= n; ++i)
		{
			double x1, y1; cin >> x1 >> y1;//左上
			double x2, y2; cin >> x2 >> y2;//右下
			pos.push_back(x1); pos.push_back(x2);
			rectangle[i].x1 = x1; rectangle[i].y1 = y1;
			rectangle[i].x2 = x2; rectangle[i].y2 = y2;
		}
		sort(pos.begin(), pos.end());
		pos.erase(unique(pos.begin(), pos.end()), pos.end());
		for (int i = 1; i <= n; ++i)
		{
			int l = lower_bound(pos.begin(), pos.end(), rectangle[i].x1) - pos.begin();
			int r = lower_bound(pos.begin(), pos.end(), rectangle[i].x2) - pos.begin();
			line.push_back(Line(l, r, rectangle[i].y1, +1));
			line.push_back(Line(l, r, rectangle[i].y2, -1));
		}
		sort(line.begin(), line.end());
		Build(1, 1, pos.size() - 1);
		bool flag = true;
		double ans = 0.0;
		double last = 0.0;
		auto it = line.begin();
		while (it != line.end())
		{
			double high = it->h;
			if (flag)last = high, flag = false;
			ans += (high - last) * tree[1].len2;
			while (it != line.end() && it->h == high)
			{
				Change(1, it->l + 1, it->r, it->val); it++;
			}
			last = high;
		}
		return ans;
	}
}

矩形周长并

namespace ScanLine
{
	const int N = 1e5 + 10;
	/*====================*/
	struct Rectangle
	{
		double x1, y1;
		double x2, y2;
	};
	Rectangle rectangle[N];
	/*====================*/
	vector<double>pos;
	/*====================*/
	struct Line
	{
		int val;
		int l, r;
		double h;
		Line(int _l = 0, int _r = 0, double _h = 0, int _val = 0)
		{
			l = _l, r = _r, h = _h, val = _val;
		}
		friend bool operator<(const Line& a, const Line& b)
		{
			if (a.h != b.h)
			{
				return a.h < b.h;
			}
			else
			{
				return  a.val > b.val;
			}
		}
	};
	vector<Line>line;
	typedef vector<Line>::iterator iter;
	/*====================*/
	struct Tree
	{
		int l, r;
		int cnt; double len;
	};
	Tree tree[N << 3];
	int ls(int p)
	{
		return p << 1;
	}
	int rs(int p)
	{
		return p << 1 | 1;
	}
	void PushUp(int p)
	{
		if (tree[p].cnt >= 1)
		{
			tree[p].len = pos[tree[p].r] - pos[tree[p].l - 1];
		}
		else
		{
			if (tree[p].l != tree[p].r)
			{
				tree[p].len = tree[ls(p)].len + tree[rs(p)].len;
			}
			else
			{
				tree[p].len = 0;
			}
		}
	}
	void Build(int p, int l, int r)
	{
		tree[p].l = l, tree[p].r = r;
		tree[p].cnt = 0; tree[p].len = 0;
		if (tree[p].l != tree[p].r)
		{
			int mid = (tree[p].l + tree[p].r) >> 1;
			Build(ls(p), l, mid + 0);
			Build(rs(p), mid + 1, r);
		}
	}
	void Change(int p, int l, int r, int d)
	{
		if (l <= tree[p].l && tree[p].r <= r)
		{
			tree[p].cnt += d; PushUp(p);
		}
		else
		{
			int mid = (tree[p].l + tree[p].r) >> 1;
			if (l <= mid)Change(ls(p), l, r, d);
			if (mid < r) Change(rs(p), l, r, d);
			PushUp(p);
		}
	}
	/*====================*/
	double Init(void)
	{
		int n; cin >> n; double ans = 0;
		for (int i = 1; i <= n; ++i)
		{
			double x1, y1; cin >> x1 >> y1;//左上
			double x2, y2; cin >> x2 >> y2;//右下
			rectangle[i].x1 = x1; rectangle[i].y1 = y1;
			rectangle[i].x2 = x2; rectangle[i].y2 = y2;
		}
		/*====================*/
		pos.clear(); line.clear();
		for (int i = 1; i <= n; ++i)
		{
			pos.push_back(rectangle[i].x1);
			pos.push_back(rectangle[i].x2);
		}
		sort(pos.begin(), pos.end());
		pos.erase(unique(pos.begin(), pos.end()), pos.end());
		for (int i = 1; i <= n; ++i)
		{
			int l = lower_bound(pos.begin(), pos.end(), rectangle[i].x1) - pos.begin();
			int r = lower_bound(pos.begin(), pos.end(), rectangle[i].x2) - pos.begin();
			line.push_back(Line(l, r, rectangle[i].y1, +1));
			line.push_back(Line(l, r, rectangle[i].y2, -1));
		}
		sort(line.begin(), line.end());
		Build(1, 1, pos.size() - 1);
		double last1 = 0;
		for (iter it = line.begin(); it != line.end(); ++it)
		{
			Change(1, it->l + 1, it->r, it->val);
			ans += abs(tree[1].len - last1); last1 = tree[1].len;
		}
		/*====================*/
		pos.clear(); line.clear();
		for (int i = 1; i <= n; ++i)
		{
			pos.push_back(rectangle[i].y1);
			pos.push_back(rectangle[i].y2);
		}
		sort(pos.begin(), pos.end());
		pos.erase(unique(pos.begin(), pos.end()), pos.end());
		for (int i = 1; i <= n; ++i)
		{
			int l = lower_bound(pos.begin(), pos.end(), rectangle[i].y1) - pos.begin();
			int r = lower_bound(pos.begin(), pos.end(), rectangle[i].y2) - pos.begin();
			line.push_back(Line(l, r, rectangle[i].x1, +1));
			line.push_back(Line(l, r, rectangle[i].x2, -1));
		}
		sort(line.begin(), line.end());
		Build(1, 1, pos.size() - 1);
		double last2 = 0;
		for (iter it = line.begin(); it != line.end(); ++it)
		{
			Change(1, it->l + 1, it->r, it->val);
			ans += abs(tree[1].len - last2); last2 = tree[1].len;
		}
		/*====================*/
		return ans;
	}
}

可删堆

template<class Type, class Comp = greater<Type>>
class C_Heap
{
private:
	priority_queue<Type, vector<Type>, Comp>heap1;
	priority_queue<Type, vector<Type>, Comp>heap2;
public:
	Type Top(void)
	{
		while (!heap2.Empty() && heap1.Top() == heap2.Top())
		{
			heap1.Pop(); heap2.Pop();
		}
		return heap1.Top();
	}
	void Pop(void)
	{
		while (!heap2.Empty() && heap1.Top() == heap2.Top())
		{
			heap1.Pop(); heap2.Pop();
		}
		heap1.Pop();
	}
	int Size(void)
	{
		return heap1.Size() - heap2.Size();
	}
	void Clear(void)
	{
		while (!heap1.Empty())heap1.Pop();
		while (!heap2.Empty())heap2.Pop();
	}
	bool Empty(void)
	{
		return heap1.Size() == heap2.Size();
	}
	void Erase(Type val)
	{
		heap2.push(val);
	}
	void Insert(Type val)
	{
		heap1.push(val);
	}
};

并查集

class C_DSU
{
private:
	vector<int>pre, siz;
	/*====================*/
	int Find(int cur)
	{
		return cur == pre[cur] ? cur : pre[cur] = Find(pre[cur]);
	}
public:
	void Init(int n)
	{
		pre.assign(n + 1, 0);siz.assign(n + 1, 1);
		for (int i = 0; i <= n; ++i)pre[i] = i;
	}
	int operator[](int cur)
	{
		return Find(cur);
	}
	void operator()(int u, int v)
	{
		u = Find(u), v = Find(v);
		if (siz[u] < siz[v])
		{
			pre[u] = v, siz[v] += siz[u];
		}
		else
		{
			pre[v] = u, siz[u] += siz[v];
		}
	}
};

主席树

template<class Type>
class ChairmanTree
{
public:
	~ChairmanTree(void)
	{
		delete[] root;
		delete[] node;
	}
	Type ask(int l, int r, int k)
	{
		return val_key[Ask(root[l - 1], root[r], 1, len, k)];
	}
	void init(int n, Type arr[])
	{
		vector<Type>line;
		for (int i = 1; i <= n; ++i)
		{
			line.push_back(arr[i]);
		}
		sort(line.begin(), line.end());
		line.erase(unique(line.begin(), line.end()), line.end());
		len = line.size();
		for (int i = 0; i < line.size(); ++i)
		{
			key_val[line[i]] = i + 1;
			val_key[i + 1] = line[i];
		}
		this->n = n;
		root = new int[n + 10];
		node = new Node[(n + 10) << 5];
		root[0] = Zero(1, len);
		for (int i = 1; i <= n; ++i)
		{
			root[i] = UpData(key_val[arr[i]], 1, len, root[i - 1]);
		}
	}
private:
	struct Node
	{
		int val = 0;
		int ls = 0, rs = 0;
	};
	/*====================*/
	int pos = 0;
	int* root = NULL;
	Node* node = NULL;
	int n = 0, len = 0;
	map<Type, int>key_val;
	map<int, Type>val_key;
	/*====================*/
	int Zero(int l, int r)
	{
		int root = ++pos;
		if (l == r)return root;
		int mid = (l + r) >> 1;
		node[root].ls = Zero(l, mid + 0);
		node[root].rs = Zero(mid + 1, r);
		return root;
	}
	int UpData(int k, int l, int r, int oldroot)
	{
		int newroot = ++pos; node[newroot] = node[oldroot]; node[newroot].val += 1;
		if (l == r)return newroot; int mid = (l + r) >> 1;
		if (k <= mid)node[newroot].ls = UpData(k, l, mid + 0, node[oldroot].ls);
		if (mid < k) node[newroot].rs = UpData(k, mid + 1, r, node[oldroot].rs);
		return newroot;
	}
	int Ask(int u, int v, int l, int r, int k)
	{
		if (l == r)return l; int mid = (l + r) >> 1;
		int x = node[node[v].ls].val - node[node[u].ls].val;
		if (k <= x)return Ask(node[u].ls, node[v].ls, l, mid, k);
		else return Ask(node[u].rs, node[v].rs, mid + 1, r, k - x);
	}
};

平衡树

带旋·Treap·权值树

template<class Type>
class C_Treap
{
private:
	struct Tree
	{
		int siz;
		Type val;
		int priority;
		Tree* ls, * rs;
		Tree(void)
		{
			siz = 0;
			val = Type();
			ls = rs = NULL;
			priority = rand();
		}
	};
	/*====================*/
	Tree* null;
	/*====================*/
	int count; Tree* root;
	/*====================*/
	Tree* Creat(Type val)
	{
		Tree* node = new Tree;
		node->ls = null;
		node->rs = null;
		node->val = val;
		node->siz = 1;
		return node;
	}
	/*====================*/
	void PushUp(Tree* cur)
	{
		cur->siz = cur->ls->siz + cur->rs->siz + 1;
	}
	/*====================*/
	void LRotate(Tree*& cur)
	{
		Tree* son = cur->rs;
		cur->rs = son->ls; son->ls = cur; cur = son;
		PushUp(cur->ls); PushUp(cur);
	}
	void RRotate(Tree*& cur)
	{
		Tree* son = cur->ls;
		cur->ls = son->rs; son->rs = cur; cur = son;
		PushUp(cur->rs); PushUp(cur);
	}
	/*====================*/
	void Insert(Tree*& cur, Type val)
	{
		if (cur == null)
		{
			cur = Creat(val);
		}
		else
		{
			if (val < cur->val)
			{
				Insert(cur->ls, val);
				if (cur->priority < cur->ls->priority)
				{
					RRotate(cur);
				}
			}
			else
			{
				Insert(cur->rs, val);
				if (cur->priority < cur->rs->priority)
				{
					LRotate(cur);
				}
			}
			PushUp(cur);
		}
	}
	void Delete(Tree*& cur, Type val)
	{
		if (cur == null)return;
		if (val == cur->val)
		{
			if (cur->ls != null && cur->rs != null)
			{
				if (cur->ls->priority < cur->rs->priority)
				{
					LRotate(cur); Delete(cur->ls, val); PushUp(cur);
				}
				else
				{
					RRotate(cur); Delete(cur->rs, val); PushUp(cur);
				}
			}
			else if (cur->ls != null)
			{
				RRotate(cur); Delete(cur->rs, val); PushUp(cur);
			}
			else if (cur->rs != null)
			{
				LRotate(cur); Delete(cur->ls, val); PushUp(cur);
			}
			else
			{
				Tree* temp = cur; cur = null; delete temp;
			}
		}
		else
		{
			if (val < cur->val)
			{
				Delete(cur->ls, val);
			}
			else
			{
				Delete(cur->rs, val);
			}
			PushUp(cur);
		}
	}
	/*====================*/
	Type GetValuByRank(int rank)
	{
		Tree* cur = root;
		while (cur != null)
		{
			if (cur->ls->siz + 1 == rank)
			{
				return cur->val;
			}
			else
			{
				if (cur->ls->siz < rank)
				{
					rank -= cur->ls->siz + 1;
					cur = cur->rs;
				}
				else
				{
					cur = cur->ls;
				}
			}
		}
		return Type();
	}
	int GetRankByValu(Type valu)
	{
		int res = 1;
		Tree* cur = root;
		while (cur != null)
		{
			if (cur->val < valu)
			{
				res += cur->ls->siz + 1;
				cur = cur->rs;
			}
			else
			{
				cur = cur->ls;
			}
		}
		return res;
	}
	/*====================*/
	void Clear(Tree* cur)
	{
		if (cur != null)
		{
			Clear(cur->ls);
			Clear(cur->rs);
			delete cur;
		}
	}
public:
	C_Treap(void)
	{
		count = 0; root = null = new Tree;
	}
	~C_Treap(void)
	{
		Clear(root); delete null;
	}
	/*====================*/
	int Size(void)
	{
		return count;
	}
	void Clear(void)
	{
		count = 0; Clear(root); root = null;
	}
	bool Empty(void)
	{
		return count == 0;
	}
	void Erase(Type val)
	{
		count--; Delete(root, val);
	}
	void Insert(Type val)
	{
		count++; Insert(root, val);
	}
	int operator()(Type valu)
	{
		return GetRankByValu(valu);
	}
	Type operator[](int rank)
	{
		return GetValuByRank(rank);
	}
};

无旋·Treap·序列树

namespace Treap
{
	struct Node
	{
		int siz = 0;
		int val = 0;
		int priority = rand();
		Node* lch = NULL, * rch = NULL;
	};
	/*====================*/
	Node* null = new Node;
	Node* root = null;
	/*====================*/
	Node* Creat(int val)
	{
		Node* node = new Node;
		node->lch = null;
		node->rch = null;
		node->val = val;
		node->siz = 1;
		return node;
	}
	/*====================*/
	void PushUp(Node* cur)
	{
		cur->siz = cur->lch->siz + cur->rch->siz + 1;
	}
	void PushDown(Node* cur)
	{
		/*预留*/
	}
	/*====================*/
	Node* Build(int l, int r)
	{
		if (l > r)return null;
		int mid = (l + r) >> 1;
		Node* cur = Creat(arr[mid]);
		cur->lch = Build(l, mid - 1);
		cur->rch = Build(mid + 1, r);
		/*=*/PushUp(cur); return cur;
	}
	/*====================*/
	Node* Merge(Node* ltree, Node* rtree)
	{
		if (ltree == null)return rtree;
		if (rtree == null)return ltree;
		PushDown(ltree); PushDown(rtree);
		if (ltree->priority < rtree->priority)
		{
			rtree->lch = Merge(ltree, rtree->lch);
			/*======*/PushUp(rtree); return rtree;
		}
		else
		{
			ltree->rch = Merge(ltree->rch, rtree);
			/*======*/PushUp(ltree); return ltree;
		}
	}
	/*====================*/
	void Lower_Split(Node* cur, int index, Node*& ltree, Node*& rtree)//index留在rtree
	{
		if (cur == null)
		{
			ltree = rtree = null; return;
		}
		PushDown(cur);
		if (cur->lch->siz + 1 < index)
		{
			Lower_Split(cur->rch, index - cur->lch->siz - 1, ltree, rtree);
			/*================*/cur->rch = ltree; PushUp(cur); ltree = cur;
		}
		else
		{
			Lower_Split(cur->lch, index, ltree, rtree);
			cur->lch = rtree; PushUp(cur); rtree = cur;
		}
	}
	void Upper_Split(Node* cur, int index, Node*& ltree, Node*& rtree)//index留在ltree
	{
		if (cur == null)
		{
			ltree = rtree = null; return;
		}
		PushDown(cur);
		if (cur->lch->siz < index)
		{
			Upper_Split(cur->rch, index - cur->lch->siz - 1, ltree, rtree);
			/*================*/cur->rch = ltree; PushUp(cur); ltree = cur;
		}
		else
		{
			Upper_Split(cur->lch, index, ltree, rtree);
			cur->lch = rtree; PushUp(cur); rtree = cur;
		}
	}
    /*====================*/
    void Split(int l, int r, Node*& ltree, Node*& mtree, Node*& rtree)
	{
		Node* o1, * o2, * o3, * o4;
		Upper_Split(root, r, o1, o2);
		Lower_Split(o1, l, o3, o4);
		ltree = o3, mtree = o4, rtree = o2;
	}
	void Merge(Node*& ltree, Node*& mtree, Node*& rtree)
	{
		root = Merge(Merge(ltree, mtree), rtree);
	}
	/*====================*/
	void Clear(Node* cur)
	{
		if (cur != null)
		{
			Clear(cur->lch);
			Clear(cur->rch);
			delete cur;
		}
	}
	/*====================*/
	void Init(void)
	{
		root = Build(1, n); 
		/*操作*/
		Clear(root); root = null;
	}
}

双旋·Splay·权值树

template<class Type>
class Splay
{
public:
	~Splay(void)
	{
		Clear(root);
		delete null;
	}
	int size(void)
	{
		return count;
	}
	void clear(void)
	{
		Clear(root);
		root = null;
	}
	bool empty(void)
	{
		return count == 0;
	}
	Type pre(Type val)
	{
		root = splay(FindPre(root, val));
		return root->val;
	}
	Type nxt(Type val)
	{
		root = splay(FindNxt(root, val));
		return root->val;
	}
	void erase(Type val)
	{
		count--; root = Delete(FindByValu(root, val));
	}
	void insert(Type val)
	{
		count++; root = splay(Insert(root, val));
	}
	int operator()(Type val)
	{
		root = splay(FindByValu(root, val));
		return root->lch->siz + 1;
	}
	Type operator[](int rank)
	{
		root = splay(FindByRank(root, rank));
		return root->val;
	}
	Type lower_bound(Type val)
	{
		root = splay(FindLower(root, val));
		return root->val;
	}
	Type upper_bound(Type val)
	{
		root = splay(FindUpper(root, val));
		return root->val;
	}
private:
	struct Node
	{
		int siz = 0;
		Type val = Type();
		Node* fa = NULL;
		Node* lch = NULL;
		Node* rch = NULL;
	};
	/*====================*/
	typedef bool CHILD;
	const CHILD LCH = true;
	const CHILD RCH = false;
	/*====================*/
	int count = 0;
	Node* null = new Node;
	Node* root = null;
	/*====================*/
	CHILD Child(Node* cur)
	{
		Node* pre = cur->fa;
		if (pre->lch == cur)
		{
			return LCH;
		}
		else
		{
			return RCH;
		}
	}

	void PushUp(Node* cur)
	{
		cur->siz = cur->lch->siz + cur->rch->siz + 1;
	}

	void Del(Node* cur, Node* pre, CHILD WCH)
	{
		cur->fa = null;
		if (WCH == LCH)pre->lch = null;
		if (WCH == RCH)pre->rch = null;
	}
	void Add(Node* cur, Node* pre, CHILD WCH)
	{
		cur->fa = pre;
		if (WCH == LCH)pre->lch = cur;
		if (WCH == RCH)pre->rch = cur;
	}

	void LRotate(Node* cur)
	{
		Node* pre = cur->fa, * nxt = cur->lch, * anc = pre->fa;
		CHILD WCH = Child(pre);
		Del(nxt, cur, LCH); Del(cur, pre, RCH); Del(pre, anc, WCH);
		Add(nxt, pre, RCH); Add(pre, cur, LCH); Add(cur, anc, WCH);
		PushUp(pre); PushUp(cur);
	}
	void RRotate(Node* cur)
	{
		Node* pre = cur->fa, * nxt = cur->rch, * anc = pre->fa;
		CHILD WCH = Child(pre);
		Del(nxt, cur, RCH); Del(cur, pre, LCH); Del(pre, anc, WCH);
		Add(nxt, pre, LCH); Add(pre, cur, RCH); Add(cur, anc, WCH);
		PushUp(pre); PushUp(cur);
	}

	void Rotate(Node* cur)
	{
		if (Child(cur) == LCH)
		{
			RRotate(cur);
		}
		else
		{
			LRotate(cur);
		}
	}

	void Clear(Node* cur)
	{
		if (cur != null)
		{
			Clear(cur->lch);
			Clear(cur->rch);
			delete cur;
		}
	}

	Node* Creat(Type val)
	{
		Node* cur = new Node;
		cur->lch = null;
		cur->rch = null;
		cur->fa = null;
		cur->val = val;
		cur->siz = 1;
		return cur;
	}

	Node* splay(Node* cur)
	{
		while (true)
		{
			Node* pre = cur->fa;
			if (cur->fa == null)break;
			if (pre->fa == null)break;
			CHILD CHpre = Child(pre);
			CHILD CHcur = Child(cur);
			if (CHpre == CHcur)
			{
				Rotate(pre); Rotate(cur); continue;
			}
			if (CHpre != CHcur)
			{
				Rotate(cur); Rotate(cur); continue;
			}
		}
		if (cur->fa != null)Rotate(cur); return cur;
	}

	Node* Insert(Node* cur, Type val)
	{
		CHILD WCH = LCH; Node* pre = null;
		while (cur != null)
		{
			if (val < cur->val)
			{
				pre = cur; cur = cur->lch; WCH = LCH;
			}
			else
			{
				pre = cur; cur = cur->rch; WCH = RCH;
			}
		}
		cur = Creat(val); Add(cur, pre, WCH); return cur;
	}

	Node* Delete(Node* cur)
	{
		splay(cur);
		Node* lch = cur->lch;
		Node* rch = cur->rch;
		delete cur; return Merge(lch, rch);
	}

	Node* Merge(Node* ltree, Node* rtree)
	{
		if (ltree == null)
		{
			rtree->fa = null; return rtree;
		}
		if (rtree == null)
		{
			ltree->fa = null; return ltree;
		}
		ltree->fa = null; rtree->fa = null;
		if (ltree->siz < rtree->siz)
		{
			Node* cur = FindMax(ltree); splay(cur);
			Add(rtree, cur, RCH); PushUp(cur); return cur;
		}
		else
		{
			Node* cur = FindMin(rtree); splay(cur);
			Add(ltree, cur, LCH); PushUp(cur); return cur;
		}
	}

	Node* FindByValu(Node* cur, Type val)
	{
		Node* res = null;
		while (cur != null)
		{
			if (val == cur->val)
			{
				res = cur, cur = cur->lch;
			}
			else
			{
				if (val < cur->val)
				{
					cur = cur->lch;
				}
				else
				{
					cur = cur->rch;
				}
			}
		}
		return res;
	}
	Node* FindByRank(Node* cur, int rank)
	{
		while (cur != null)
		{
			if (cur->lch->siz + 1 == rank)
			{
				return cur;
			}
			else
			{
				if (cur->lch->siz < rank)
				{
					rank -= cur->lch->siz + 1;
					cur = cur->rch;
				}
				else
				{
					cur = cur->lch;
				}
			}
		}
		return null;
	}

	Node* FindLower(Node* cur, Type val)
	{
		Node* res = null;
		while (cur != null)
		{
			if (cur->val < val)
			{
				cur = cur->rch;
			}
			else
			{
				res = cur;
				cur = cur->lch;
			}
		}
		return res;
	}
	Node* FindUpper(Node* cur, Type val)
	{
		Node* res = null;
		while (cur != null)
		{
			if (val < cur->val)
			{
				res = cur;
				cur = cur->lch;
			}
			else
			{
				cur = cur->rch;
			}
		}
		return res;
	}

	Node* FindMin(Node* cur)
	{
		while (cur->lch != null)
		{
			cur = cur->lch;
		}
		return cur;
	}
	Node* FindMax(Node* cur)
	{
		while (cur->rch != null)
		{
			cur = cur->rch;
		}
		return cur;
	}

	Node* FindPre(Node* cur, Type val)
	{
		Node* res = null;
		while (cur != null)
		{
			if (cur->val < val)
			{
				res = cur;
				cur = cur->rch;
			}
			else
			{
				cur = cur->lch;
			}
		}
		return res;
	}
	Node* FindNxt(Node* cur, Type val)
	{
		Node* res = null;
		while (cur != null)
		{
			if (val < cur->val)
			{
				res = cur;
				cur = cur->lch;
			}
			else
			{
				cur = cur->rch;
			}
		}
		return res;
	}
};

珂朵莉树

template<class Type>
class Chtholly
{
public:
	void init(int n, Type arr[])
	{
		for (int i = 1; i <= n; ++i)
		{
			tree.insert(Node(i, i, arr[i]));
		}
	}
	void cover(int l, int r, Type val)
	{
		auto end = Split(r + 1), begin = Split(l);
		for (auto it = begin; it != end; ++it)
		{
			/*
				统计信息
			*/
		}
		tree.erase(begin, end);
		tree.insert(Node(l, r, val));
	}
private:
	struct Node
	{
		int l, r;
		mutable Type val;
		Node(int _l = 0, int _r = 0, Type _val = Type())
		{
			l = _l, r = _r, val = _val;
		}
		friend bool operator<(const Node& a, const Node& b)
		{
			return a.l < b.l;
		}
	};
	/*====================*/
	set<Node>tree;
	/*====================*/
	set<Node>::iterator Split(int pos)//lower
	{
		auto it = tree.lower_bound(Node(pos));
		if (it != tree.end() && it->l == pos)return it;
		--it; int l = it->l, r = it->r, val = it->val;
		tree.erase(it); tree.insert(Node(l, pos - 1, val));
		return tree.insert(Node(pos, r, val)).first;
	}
};

树状数组

权值树状数组

class C_FenwickTree
{
private:
	int n, m; vector<int>tree;
	/*====================*/
	int lowbit(int x) { return x & (-x); }
public:
	C_FenwickTree(void)
	{
		n = m = 0;
	}
	/*====================*/
	int Size(void)
	{
		return tree[0];
	}
	void Init(int n)
	{
		this->n = n; m = 0;
		tree.assign(n + 1, 0);
		while ((1 << (m + 1)) <= n)m++;
	}
	bool Empty(void)
	{
		return tree[0] == 0;
	}
	void Erase(int x)
	{
		tree[0]--;
		while (x <= n)
		{
			tree[x] -= 1; x += lowbit(x);
		}
	}
	void Insert(int x)
	{
		tree[0]++;
		while (x <= n)
		{
			tree[x] += 1; x += lowbit(x);
		}
	}
	int operator()(int valu)
	{
		valu--;
		int rank = 0;
		while (valu)
		{
			rank += tree[valu];
			valu -= lowbit(valu);
		}
		return rank + 1;
	}
	int operator[](int rank)
	{
		int sum = 0, valu = 0;
		for (int i = m; i >= 0; --i)
		{
			int temp = valu + (1 << i);
			if (temp <= n && sum + tree[temp] < rank)
			{
				sum += tree[temp]; valu = temp;
			}
		}
		return valu + 1;
	}
};

一维树状数组

template<class Type>
class FenwickTree
{
public:
	Type ask(int pos)
	{
		Type res = Type();
		while (pos)
		{
			res += tree[pos];
			pos -= lowbit(pos);
		}
		return res;
	}
	void init(int n)
	{
		this->n = n;
		tree = new Type[n + 1];
		for (int i = 0; i <= n; ++i)
		{
			tree[i] = Type();
		}
	}
	~FenwickTree(void)
	{
		delete[] tree;
	}
	void add(int pos, Type d)
	{
		while (pos <= n)
		{
			tree[pos] += d;
			pos += lowbit(pos);
		}
	}
	Type ask(int l, int r)
	{
		Type res = Type(); l--;
		while (r > l)res += tree[r], r -= lowbit(r);
		while (l > r)res -= tree[l], l -= lowbit(l);
		return res;
	}
private:
	int n = 0;
	Type* tree = NULL;
	/*====================*/
	int lowbit(int x) { return x & (-x); }
};

二维树状数组

template<class Type>
class FenwickTree
{
public:
	~FenwickTree(void)
	{
		for (int i = 0; i <= n; ++i)
		{
			delete[] tree[i];
		}
		delete[] tree;
	}
	Type ask(int x, int y)
	{
		Type res = Type();
		while (x)
		{
			int tempy = y;
			while (tempy)
			{
				res += tree[x][tempy];
				tempy -= lowbit(tempy);
			}
			x -= lowbit(x);
		}
		return res;
	}
	void init(int n, int m)
	{
		this->n = n;
		this->m = m;
		tree = new Type * [n + 1];
		for (int i = 0; i <= n; ++i)
		{
			tree[i] = new Type[m + 1];
			for (int j = 0; j <= m; ++j)
			{
				tree[i][j] = Type();
			}
		}
	}
	void add(int x, int y, Type d)
	{
		while (x <= n)
		{
			int tempy = y;
			while (tempy <= m)
			{
				tree[x][tempy] += d;
				tempy += lowbit(tempy);
			}
			x += lowbit(x);
		}
	}
	Type ask(int x1, int y1, int x2, int y2)
	{
		return ask(x2, y2) - ask(x1 - 1, y2) - ask(x2, y1 - 1) + ask(x1 - 1, y1 - 1);
	}
private:
	int n = 0, m = 0;
	Type** tree = NULL;
	/*====================*/
	int lowbit(int x) { return x & (-x); }
};

区间mex

class Range_MEX
{
public:
	Range_MEX(int n, int arr[], int l, int r)
	{
		root = new int[n + 1];
		tree = new Tree[4200000 + 10];

		for (int i = 0; i <= n; ++i)root[i] = -1;

		BuildZero(root[0], l, r);
		for (int i = 1; i <= n; ++i)
		{
			BuildChain(root[i - 1], root[i], i, arr[i]);
		}
	}
	int operator()(int l, int r)
	{
		return Ask(root[r], l);
	}
	~Range_MEX(void)
	{
		delete[] tree;
		delete[] root;
	}
private:
	struct Tree
	{
		int idx;
		int l, r;
		int ls, rs;
		Tree(void)
		{
			idx = 0;
			l = 0, r = 0;
			ls = -1, rs = -1;
		}
	};
	/*====================*/
	int * root;
	Tree* tree; int cnt = -1;
	/*====================*/
	void PushUp(int cur)
	{
		tree[cur].idx = min(tree[tree[cur].ls].idx, tree[tree[cur].rs].idx);
	}
	/*====================*/
	void BuildZero(int& cur, int l, int r)
	{
		if (cur == -1)cur = ++cnt;
		/*====================*/
		tree[cur].l = l, tree[cur].r = r;
		if (l != r)
		{
			int mid = (l + r) >> 1;
			BuildZero(tree[cur].ls, l, mid + 0);
			BuildZero(tree[cur].rs, mid + 1, r);
		}
	}
	void BuildChain(int& pre, int& cur, int idx, int val)
	{
		if (cur == -1)cur = ++cnt;
		/*====================*/
		tree[cur].l = tree[pre].l, tree[cur].r = tree[pre].r;
		tree[cur].ls = tree[pre].ls, tree[cur].rs = tree[pre].rs;
		if (tree[cur].l == tree[cur].r)
		{
			tree[cur].idx = idx;
		}
		else
		{
			int mid = (tree[cur].l + tree[cur].r) >> 1;
			if (val <= mid)BuildChain(tree[pre].ls, tree[cur].ls = -1, idx, val);
			if (mid < val) BuildChain(tree[pre].rs, tree[cur].rs = -1, idx, val);
			PushUp(cur);
		}
	}
	/*====================*/
	int Ask(int& cur, int l)
	{
		if (tree[cur].l == tree[cur].r)return tree[cur].l;
		if (tree[tree[cur].ls].idx < l)return Ask(tree[cur].ls, l);
		if (tree[tree[cur].rs].idx < l)return Ask(tree[cur].rs, l);
		return tree[cur].r + 1;
	}
};

Hash_MAP

const int Base = 19260817;
class Hash_Map 
{
public:
	Hash_Map()
	{
		memset(head, -1, sizeof(head));
		nxt.reserve(1e7);
		key.reserve(1e7);
		val.reserve(1e7);
	}
	lnt& operator[](lnt k)
	{
		int h = hash(k);
		for (int i = head[h]; ~i; i = nxt[i])
		{
			if (key[i] == k)
			{
				return val[i];
			}
		}
		nxt.push_back(head[h]);
		key.push_back(k);
		val.push_back(0);
		head[h] = nxt.size() - 1;
		return val.back();
	}
	lnt has_key(lnt k) 
	{
		int h = hash(k);
		for (int i = head[h]; ~i; i = nxt[i])
		{
			if (key[i] == k)
			{
				return true;
			}
		}
		return false;
	}
private:
	int head[Base];
	vector<int>nxt;
	vector<lnt>key;
	vector<lnt>val;
	int hash(lnt k) 
	{ 
		return k % Base; 
	}
};

线段树合并

/*
* 与动态开点权值线段树搭配使用
*/
Tree* Merge(Tree*& a, Tree*& b, int treel, int treer)
{
	Tree* cur = null;
	if (a == null)
	{
		cur = b; b = null; return cur;
	}
	if (b == null)
	{
		cur = a; a = null; return cur;
	}
	cur = Creat();
	if (treel == treer)
	{
		cur->siz = a->siz + b->siz;
	}
	else
	{
		int mid = (treel + treer) >> 1;
		cur->ls = Merge(a->ls, b->ls, treel, mid + 0);
		cur->rs = Merge(a->rs, b->rs, mid + 1, treer);
		cur->siz = cur->ls->siz + cur->rs->siz;
	}
	delete a; a = null; delete b; b = null; return cur;
}

李超线段树

class C_LiChaoTree
{
private:
	struct Function
	{
		int k, b;
		int operator()(int x)
		{
			return k * x + b;
		}
		Function(int _k = 0, int _b = +INF)
		{
			k = _k, b = _b;
		}
	};
	/*====================*/
	struct Tree
	{
		Function f;
		Tree* ls, * rs;
		Tree(void)
		{
			ls = rs = NULL;
		}
	};
	/*====================*/
	Tree* root; int treel, treer;
	/*====================*/
	void PushDown(Tree*& cur, Function f, int treel, int treer)
	{
		if (cur == NULL)cur = new Tree;
		int mid = (treel + treer) >> 1;
		if (treel != treer)
		{
			if (cur->f.k < f.k)
			{
				if (f(mid) < cur->f(mid))
				{
					PushDown(cur->rs, cur->f, treel, mid + 0);
				}
				else
				{
					PushDown(cur->ls, f, mid + 1, treer);
				}
			}
			else
			{
				if (f(mid) < cur->f(mid))
				{
					PushDown(cur->ls, cur->f, treel, mid + 0);
				}
				else
				{
					PushDown(cur->rs, f, mid + 1, treer);
				}
			}
		}
		if (f(mid) < cur->f(mid))cur->f = f;
	}
	void Add(Tree*& cur, int l, int r, Function f, int treel, int treer)
	{
		if (cur == NULL)cur = new Tree;
		if (l <= treel && treer <= r)
		{
			PushDown(cur, f, treel, treer);
		}
		else
		{
			int mid = (treel + treer) >> 1;
			if (l <= mid)Add(cur->ls, l, r, f, treel, mid + 0);
			if (mid < r) Add(cur->rs, l, r, f, mid + 1, treer);
		}
	}
	int Ask(Tree* cur, int x, int treel, int treer)
	{
		int res = +INF;
		if (cur != NULL)
		{
			res = cur->f(x);
			if (treel != treer)
			{
				int mid = (treel + treer) >> 1;
				if (x <= mid)res = min(res, Ask(cur->ls, x, treel, mid + 0));
				if (mid < x) res = min(res, Ask(cur->rs, x, mid + 1, treer));
			}
		}
		return res;
	}
public:
	C_LiChaoTree(void)
	{
		root = NULL, treel = treer = 0;
	}
	~C_LiChaoTree(void)
	{
		if (root != NULL)
		{
			queue<Tree*>q; q.push(root);
			while (!q.empty())
			{
				if (q.front()->ls != NULL)q.push(q.front()->ls);
				if (q.front()->rs != NULL)q.push(q.front()->rs);
				delete q.front(); q.pop();
			}
		}
	}
    /*====================*/
	void Init(int treel, int treer)
	{
		this->treel = treel;
		this->treer = treer;
	}
	void operator()(int l, int r, Function  f)
	{
		Add(root, l, r, f, treel, treer);
	}
	int operator[](int x)
	{
		return Ask(root, x, treel, treer);
	}
};

Treap维护珂朵莉树

namespace Treap
{
	struct Node
	{
		Range range;
		int priority;
		int lch, rch;
	}node[N * 4];
	/*====================*/
	int null = -1;
	int root = -1;
	/*====================*/
	int Creat(Range range)
	{
		static int cnt = 0; ++cnt;
		node[cnt].lch = null;
		node[cnt].rch = null;
		node[cnt].priority = rand();
		node[cnt].range = range;
		return cnt;
	}
	/*====================*/
	void PushUp(int cur)
	{
		node[cur].range.L = node[cur].range.l;
		node[cur].range.R = node[cur].range.r;
		node[cur].range.Sum = node[cur].range.sum();
		if (node[cur].lch != null)
		{
			node[cur].range.L = node[node[cur].lch].range.L;
			node[cur].range.Sum += node[node[cur].lch].range.Sum;
		}
		if (node[cur].rch != null)
		{
			node[cur].range.R = node[node[cur].rch].range.R;
			node[cur].range.Sum += node[node[cur].rch].range.Sum;
		}
	}
	void PushDown(int cur)
	{
		if (node[cur].range.lazy != 0)
		{
			if (node[cur].lch != null)
			{
				node[node[cur].lch].range.Maintain(node[cur].range.lazy);
			}
			if (node[cur].rch != null)
			{
				node[node[cur].rch].range.Maintain(node[cur].range.lazy);
			}
			node[cur].range.lazy = 0;
		}
	}
	/*====================*/
	int Merge(int ltree, int rtree)
	{
		if (ltree == null)return rtree;
		if (rtree == null)return ltree;
		PushDown(ltree); PushDown(rtree);
		if (node[ltree].priority < node[rtree].priority)
		{
			node[rtree].lch = Merge(ltree, node[rtree].lch);
			/*======*/PushUp(rtree); return rtree;
		}
		else
		{
			node[ltree].rch = Merge(node[ltree].rch, rtree);
			/*======*/PushUp(ltree); return ltree;
		}
	}
	/*====================*/
	void Lower_Split(int cur, unt index, int& ltree, int& rtree)//index留在rtree
	{
		if (cur == null)
		{
			ltree = rtree = null; return;
		}
		PushDown(cur);
		if (node[cur].range.r < index)
		{
			Lower_Split(node[cur].rch, index, ltree, rtree);
			node[cur].rch = ltree; PushUp(cur); ltree = cur;
		}
		else
		{
			Lower_Split(node[cur].lch, index, ltree, rtree);
			node[cur].lch = rtree; PushUp(cur); rtree = cur;
		}
	}
	void Upper_Split(int cur, unt index, int& ltree, int& rtree)//index留在ltree
	{
		if (cur == null)
		{
			ltree = rtree = null; return;
		}
		PushDown(cur);
		if (node[cur].range.l > index)
		{
			Upper_Split(node[cur].lch, index, ltree, rtree);
			node[cur].lch = rtree; PushUp(cur); rtree = cur;
		}
		else
		{

			Upper_Split(node[cur].rch, index, ltree, rtree);
			node[cur].rch = ltree; PushUp(cur); ltree = cur;
		}
	}
	/*====================*/
	void SplitL(int root, unt index, int& ltree, int& rtree)
	{
		int _temp, _ltree, _mtree, _rtree;
		Upper_Split(root, index, _temp, _rtree);
		Lower_Split(_temp, index, _ltree, _mtree);
		unt l = node[_mtree].range.l;
		unt r = node[_mtree].range.r;
		unt val = node[_mtree].range.val;
		if (l != index)
		{
			ltree = Merge(_ltree, Creat(Range(l, index - 1, val)));
			rtree = Merge(Creat(Range(index + 0, r, val)), _rtree);
		}
		else
		{
			ltree = _ltree;
			rtree = Merge(_mtree, _rtree);
		}
	}
	void SplitR(int root, unt index, int& ltree, int& rtree)
	{
		int _temp, _ltree, _mtree, _rtree;
		Upper_Split(root, index, _temp, _rtree);
		Lower_Split(_temp, index, _ltree, _mtree);
		unt l = node[_mtree].range.l;
		unt r = node[_mtree].range.r;
		unt val = node[_mtree].range.val;
		if (r != index)
		{
			ltree = Merge(_ltree, Creat(Range(l, index + 0, val)));
			rtree = Merge(Creat(Range(index + 1, r, val)), _rtree);
		}
		else
		{
			ltree = Merge(_ltree, _mtree);
			rtree = _rtree;
		}
	}
}

动态开点权值线段树

class C_SegmentTree
{
private:
	struct Tree
	{
		int siz;
		Tree* ls, * rs;
		Tree(void)
		{
			siz = 0; ls = rs = NULL;
		}
	};
	/*====================*/
	Tree* null;
	/*====================*/
	Tree* root; int treel, treer;
	/*====================*/
	Tree* Creat(int siz = 0)
	{
		Tree* cur = new Tree;
		cur->siz = siz; cur->ls = cur->rs = null;
		return cur;
	}
	/*====================*/
	void Change(Tree*& cur, int valu, int delta, int treel, int treer)
	{
		if (cur == null)cur = Creat();
		cur->siz += delta;
		if (treel != treer)
		{
			int mid = (treel + treer) >> 1;
			if (valu <= mid)Change(cur->ls, valu, delta, treel, mid + 0);
			if (mid < valu) Change(cur->rs, valu, delta, mid + 1, treer);
		}
	}
    /*====================*/
	int GetValuByRank(Tree* cur, int rank, int treel, int treer)
	{
		if (treel == treer)
		{
			return treel;
		}
		else
		{
			int mid = (treel + treer) >> 1;
			if (cur->ls->siz >= rank)
			{
				return GetValuByRank(cur->ls, rank, treel, mid + 0);
			}
			else
			{
				return GetValuByRank(cur->rs, rank - cur->ls->siz, mid + 1, treer);
			}
		}
	}
	int GetRankByValu(Tree* cur, int valu, int treel, int treer)
	{
		if (cur == null)
		{
			return 0;
		}
		else
		{
			if (treer < valu)
			{
				return cur->siz;
			}
			else
			{
				int res = 0;
				int mid = (treel + treer) >> 1;
				res += GetRankByValu(cur->ls, valu, treel, mid + 0);
				if (mid + 1 < valu) res += GetRankByValu(cur->rs, valu, mid + 1, treer);
				return res;
			}
		}
	}
public:
	C_SegmentTree(void)
	{
		root = null = new Tree; treel = treer = 0;
	}
	~C_SegmentTree(void)
	{
		if (root != null)
		{
			queue<Tree*>q; q.push(root);
			while (!q.empty())
			{
				if (q.front()->ls != null)q.push(q.front()->ls);
				if (q.front()->rs != null)q.push(q.front()->rs);
				delete q.front(); q.pop();
			}
		}
		delete null;
	}
	/*====================*/
	int Size(void)
	{
		return root->siz;
	}
	bool Empty(void)
	{
		return root->siz == 0;
	}
	void Init(int treel, int treer)
	{
		this->treel = treel; this->treer = treer;
	}
	void Erase(int valu)
	{
		Change(root, valu, -1, treel, treer);
	}
	void Insert(int valu)
	{
		Change(root, valu, +1, treel, treer);
	}
	int operator[](int rank)
	{
		return GetValuByRank(root, rank, treel, treer);
	}
	int operator()(int valu)
	{
		return GetRankByValu(root, valu, treel, treer) + 1;
	}
};

数据类型

大数类

struct Bigint 
{
	int sign; string digits;
	/*====================*/
	Bigint(void) {}
	Bigint(string b) { (*this) = b; }
	Bigint(int b) { (*this) = to_string(b); }
	/*====================*/
	int size(void) 
	{
		return digits.size();
	}
	Bigint inverseSign(void) 
	{ 
		sign *= -1; return (*this);
	}
	Bigint normalize(int newSign) 
	{ 
		for (int i = digits.size() - 1; i > 0 && digits[i] == '0'; i--)
		{
			digits.erase(digits.begin() + i);
		}
		sign = (digits.size() == 1 && digits[0] == '0') ? 1 : newSign; return (*this);
	}
	/*====================*/
	void operator = (string b) 
	{ 
		digits = b[0] == '-' ? b.substr(1) : b;
		reverse(digits.begin(), digits.end());
		this->normalize(b[0] == '-' ? -1 : 1);
	}
	/*====================*/
	bool operator < (const Bigint& b) const 
	{ 
		if (sign != b.sign) return sign < b.sign;
		if (digits.size() != b.digits.size())
			return sign == 1 ? digits.size() < b.digits.size() : digits.size() > b.digits.size();
		for (int i = digits.size() - 1; i >= 0; i--) if (digits[i] != b.digits[i])
			return sign == 1 ? digits[i] < b.digits[i] : digits[i] > b.digits[i];
		return false;
	}
	bool operator == (const Bigint& b) const 
	{
		return digits == b.digits && sign == b.sign;
	}
	/*====================*/
	Bigint operator + (Bigint b) 
	{ 
		if (sign != b.sign) return (*this) - b.inverseSign();
		Bigint c;
		for (int i = 0, carry = 0; i < digits.size() || i < b.size() || carry; i++) {
			carry += (i < digits.size() ? digits[i] - 48 : 0) + (i < b.digits.size() ? b.digits[i] - 48 : 0);
			c.digits += (carry % 10 + 48);
			carry /= 10;
		}
		return c.normalize(sign);
	}
	Bigint operator - (Bigint b) 
	{ 
		if (sign != b.sign) return (*this) + b.inverseSign();
		int s = sign; sign = b.sign = 1;
		if ((*this) < b) return ((b - (*this)).inverseSign()).normalize(-s);
		Bigint c;
		for (int i = 0, borrow = 0; i < digits.size(); i++) {
			borrow = digits[i] - borrow - (i < b.size() ? b.digits[i] : 48);
			c.digits += borrow >= 0 ? borrow + 48 : borrow + 58;
			borrow = borrow >= 0 ? 0 : 1;
		}
		return c.normalize(s);
	}
	Bigint operator * (Bigint b) 
	{ 
		Bigint c("0");
		for (int i = 0, k = digits[i] - 48; i < digits.size(); i++, k = digits[i] - 48) {
			while (k--) c = c + b;
			b.digits.insert(b.digits.begin(), '0');
		}
		return c.normalize(sign * b.sign);
	}
	Bigint operator / (Bigint b) 
	{
		if (b.size() == 1 && b.digits[0] == '0') b.digits[0] /= (b.digits[0] - 48);
		Bigint c("0"), d;
		for (int j = 0; j < digits.size(); j++) d.digits += "0";
		int dSign = sign * b.sign; b.sign = 1;
		for (int i = digits.size() - 1; i >= 0; i--) {
			c.digits.insert(c.digits.begin(), '0');
			c = c + digits.substr(i, 1);
			while (!(c < b)) c = c - b, d.digits[i]++;
		}
		return d.normalize(dSign);
	}
	Bigint operator % (Bigint b) 
	{
		if (b.size() == 1 && b.digits[0] == '0') b.digits[0] /= (b.digits[0] - 48);
		Bigint c("0");
		b.sign = 1;
		for (int i = digits.size() - 1; i >= 0; i--) {
			c.digits.insert(c.digits.begin(), '0');
			c = c + digits.substr(i, 1);
			while (!(c < b)) c = c - b;
		}
		return c.normalize(sign);
	}
	/*====================*/
	friend ostream& operator<<(ostream& output, Bigint& integer)
	{
		if (integer.sign == -1) output << "-";
		for (int i = integer.digits.size() - 1; i >= 0; i--)
		{
			output << integer.digits[i];
		}
		return output;
	}
	friend istream& operator>>(istream& input, Bigint& integer)
	{
		string str; input >> str; integer = str; return input;
	}
};

分数类

class Fraction
{
public:
	Fraction(const Fraction& temp)
	{
		up = temp.up, dw = temp.dw;
	}
	Fraction(int _up = 0, int _dw = 1)
	{
		up = _up, dw = _dw; reduction();
	}

	int upval(void)
	{
		return up;
	}
	int dwval(void)
	{
		return dw;
	}
	double val(void)
	{
		return double(up) / double(dw);
	}

	friend Fraction operator+(const Fraction& a, const Fraction& b)
	{
		Fraction res;
		res.dw = a.dw * b.dw;
		res.up = a.up * b.dw + b.up * a.dw;
		res.reduction(); return res;
	}
	friend Fraction operator-(const Fraction& a, const Fraction& b)
	{
		Fraction res;
		res.dw = a.dw * b.dw;
		res.up = a.up * b.dw - b.up * a.dw;
		res.reduction(); return res;
	}
	friend Fraction operator*(const Fraction& a, const Fraction& b)
	{
		Fraction res;
		res.dw = a.dw * b.dw;
		res.up = a.up * b.up;
		res.reduction(); return res;
	}
	friend Fraction operator/(const Fraction& a, const Fraction& b)
	{
		Fraction res;
		res.dw = a.dw * b.up;
		res.up = a.up * b.dw;
		res.reduction(); return res;
	}

	friend bool operator<(const Fraction& a, const Fraction& b)
	{
		return (a.up * b.dw) < (b.up * a.dw);
	}
	friend bool operator==(const Fraction& a, const Fraction& b)
	{
		return (a.up == b.up) && (a.dw == b.dw);
	}
	friend bool operator>(const Fraction& a, const Fraction& b)
	{
		return (a.up * b.dw) > (b.up * a.dw);
	}
	friend bool operator<=(const Fraction& a, const Fraction& b)
	{
		return !(a > b);
	}
	friend bool operator!=(const Fraction& a, const Fraction& b)
	{
		return !(a == b);
	}
	friend bool operator>=(const Fraction& a, const Fraction& b)
	{
		return !(a < b);
	}

	void operator+=(const Fraction& x)
	{
		up = up * x.dw + x.up * dw;
		dw = dw * x.dw;
		reduction();
	}
	void operator-=(const Fraction& x)
	{
		up = up * x.dw - x.up * dw;
		dw = dw * x.dw;
		reduction();
	}
	void operator*=(const Fraction& x)
	{
		up = up * x.up;
		dw = dw * x.dw;
		reduction();
	}
	void operator/=(const Fraction& x)
	{
		up = up * x.dw;
		dw = dw * x.up;
		reduction();
	}
private:
	int up = 0, dw = 1;
	/*====================*/
	int gcd(int a, int b)
	{
		return b == 0 ? a : gcd(b, a % b);
	}
	/*====================*/
	void reduction(void)
	{
		int divisor = gcd(up, dw);
		if (divisor != 0)
		{
			up /= divisor, dw /= divisor;
			if (dw < 0)dw *= -1, up *= -1;
		}
	}
};

模数类

class Modulo
{
public:
	int val(void)
	{
		return num;
	}

	Modulo(int x = 0)
	{
		num = x % MOD;
	}
	Modulo(const Modulo& temp)
	{
		num = temp.num;
	}

	friend Modulo operator+(const Modulo& a, const Modulo& b)
	{
		Modulo res;
		res.num = (a.num + b.num) % res.MOD;
		return res;
	}
	friend Modulo operator-(const Modulo& a, const Modulo& b)
	{
		Modulo res;
		res.num = (a.num - b.num + res.MOD) % res.MOD;
		return res;
	}
	friend Modulo operator*(const Modulo& a, const Modulo& b)
	{
		Modulo res;
		res.num = (a.num * b.num) % res.MOD;
		return res;
	}
	friend Modulo operator/(const Modulo& a, const Modulo& b)
	{
		Modulo res;
		res.num = (a.num * res.inv(b.num)) % res.MOD;
		return res;
	}

	friend bool operator< (const Modulo& a, const Modulo& b)
	{
		return a.num < b.num;
	}
	friend bool operator==(const Modulo& a, const Modulo& b)
	{
		return a.num == b.num;
	}
	friend bool operator> (const Modulo& a, const Modulo& b)
	{
		return a.num > b.num;
	}
	friend bool operator<=(const Modulo& a, const Modulo& b)
	{
		return a.num <= b.num;
	}
	friend bool operator!=(const Modulo& a, const Modulo& b)
	{
		return a.num != b.num;
	}
	friend bool operator>=(const Modulo& a, const Modulo& b)
	{
		return a.num >= b.num;
	}

	void operator+=(const Modulo& x)
	{
		num = (num + x.num) % MOD;
	}
	void operator-=(const Modulo& x)
	{
		num = (num - x.num + MOD) % MOD;
	}
	void operator*=(const Modulo& x)
	{
		num = (num * x.num) % MOD;
	}
	void operator/=(const Modulo& x)
	{
		num = (num * inv(x.num)) % MOD;
	}
private:
	int num = 0;
	const int MOD = 998244353;
	/*====================*/
	int inv(int x)
	{
		return Pow(x, MOD - 2);
	}
	int Pow(int a, int b)
	{
		int res = 1;
		while (b)
		{
			if (b & 1)
			{
				res = (res * a) % MOD;
			}
			b >>= 1, a = (a * a) % MOD;
		}
		return res;
	}
};

标签:2.20240411,node,return,cur,val,int,void,v1.12,模板
From: https://www.cnblogs.com/ProtectEMmm/p/18128435

相关文章

  • C++——模板初阶
    目录0.前言1.泛型编程2.函数模板2.1函数模板概念2.1函数模板格式2.3函数模板的原理2.4函数模板的实例化2.5模板参数的匹配原则3.类模板3.1类模板的定义格式3.2类模板的实例化0.前言C++模板是一种泛型编程的工具,允许开发者定义对多种数据类型都适用的代......
  • 【模板】任意模数多项式乘法:三模 NTT
    前置知识https://www.cnblogs.com/caijianhong/p/template-crt.htmlhttps://www.cnblogs.com/caijianhong/p/template-fft.html题目描述任意模数多项式乘法solution首先我们打开https://blog.miskcoo.com/2014/07/fft-prime-table这篇文章找到\(998244353\)附近的几个质......
  • 蓝桥杯单片机基于西风模板超声波底层
    超声波是外设需要重新自己编写c文件和h文件在c文件中需要编写两个函数一个是波的初始化一个是方波的读取voidWave_Init(){unsignedchari;for(i=0;i<8;i++){TX=1;发送信号Delay(12)us哦Tx=0在延时12us}这样波的初始化就好了}unsignedcharWave_Read(){unsig......
  • template—模板初阶(C++)
        本篇将会对Cpp中的模板进行一个简单的介绍(后序还关系模板进阶,对模板的内容进行更深入的讲解),其中包括模板的使用:函数模板、类模板,以及对于泛型编程的理解。其中的重点为函数模板,介绍了函数模板的原理、隐式实例化和显示实例化、还有模板参数的匹配规则。目录如下......
  • Dotnet8.0常用工程模板
     --dotnetnew--installMicrosoft.Azure.WebJobs.ProjectTemplates安装最新版本dotnetnewinstallMicrosoft.DotNet.Web.Spa.ProjectTemplates安装指定版本dotnetnewinstallMicrosoft.DotNet.Web.Spa.ProjectTemplates::2.0.0安装制定版本且制定数据源dotnetnew......
  • 洛谷题单指南-数学基础问题-P3383 【模板】线性筛素数
    原题链接:https://www.luogu.com.cn/problem/P3383题意解读:素数筛模版题。解题思路:素数筛介绍所谓素数(质数),是指除了1和它本身以外不再有其他因数的自然数,一般用试除法判断素数(时间复杂度:O(sqrt(n))):boolisprime(intx){if(x<=1)returnfalse;for(inti=2;i*......
  • C++ 标准模板库 STL(1)set 与 multiset
    一、简介    set与multiset容器能够快速查找键,键是存储在一维容器中的值,二者的区别在于前者不能够存储重复的键值,后者能够存储重复键值。    set与multiset内部结构类似于二叉树,并且被插入到set与multiset容器中的元素会默认进行排序,从而提高查找速度。这意......
  • 算法模板 v1.12.1.20240409
    算法模板v1.1.1.20240115:之前历史版本已不可寻,创建第一份算法模板。v1.2.1.20240116:删除“编译”-“手动开栈”;删除“编译”-“手动开O优化”;修改“编译”-“CF模板”;删除“读写”;删除“图论”-“欧拉图”-“混合图”;删除“图论”-“可达性统计”;删除“数据类型”-“高精类”。......
  • UI Toolkit进阶 - Template模板
    上篇文章我们介绍了UIToolkit,但是没有深入它的用法。本文就以一个项目界面从UGUI到UIToolkit的改造过程为例,来学习一下较高阶的使用方法。首先介绍一下本次的项目MarkovCraft,这个项目是在MarkovJunior基础上的一个二次开发,把原项目放在了Unity中,让用户在三维环境中看到动态的生......
  • 今天给大家推荐100套响应式模板
    响应式模板是一种可以自动适应不同屏幕尺寸的网站模板。它们非常适合在各种设备上查看网站,包括台式机、笔记本电脑、平板电脑和智能手机。以下是一些推荐使用响应式模板的理由:提高用户体验: 响应式模板可以为用户提供更好的体验,无论他们使用何种设备访问您的网站。提高搜索......