首页 > 编程语言 >遗传算法(matlab)

遗传算法(matlab)

时间:2024-03-29 21:32:21浏览次数:36  
标签:10 fitvalue chromlength pop matlab objvalue 遗传算法

% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 编程
%-----------------------------------------------
% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
function genmain()
tic;
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindividual;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z
toc

% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化

function pop=initpop(popsize,chromlength) 
pop=round(rand(popsize,chromlength)) % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi 
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10] 
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindividual,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindividual=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindividual=pop(i,:);
bestfit=fitvalue(i);
end
end

标签:10,fitvalue,chromlength,pop,matlab,objvalue,遗传算法
From: https://blog.csdn.net/m0_57692904/article/details/137156757

相关文章

  • MATLAB
    MATLAB主要内容突击参考资料:MATLAB入门之旅(mathworks.com)命令在命令的末尾添加分号将抑制输出,但仍会执行该命令,正如您在工作区中所看到的。当您输入命令而没有以分号结尾时,MATLAB将会在命令提示符下显示结果。>>x=5+1x=6>>x=5+1;%不会输出(Ctrl+R......
  • matlab实现神经网络
    一、原理人工神经网络是具有适应性的简单神经元组成的广泛并互连的网络,它的组织能够模拟生物神经系统对真实世界物体作出的交互式反应。人工神经网络具有自学习、自组织、较好的容错性和优良的非线性逼近能力将神经网络的学习能力引入到模糊系统中,将模糊系统的模糊化处理、模......
  • m基于yolov2网络的火焰烟雾检测系统matlab仿真,包含GUI界面
    1.算法仿真效果matlab2022a仿真结果如下:  2.算法涉及理论知识概要        YOLOv2是一个实时目标检测系统,由JosephRedmon和AliFarhadi在2016年提出。它通过单个神经网络对输入图像进行一次前向传播就能预测出图像中的多个目标及其位置。在火焰烟雾......
  • MATLAB的一些基本知识
    1.矩阵%矩阵A=[123;456;789]B=A'%行变列,列变行C=A(:)%以先列后行的顺序打印为一列D=inv(A)%求逆A*DE=zeros(10,5,3)%打印三个10行5列的矩阵E(:,:,1)=rand(10,5)%打印随机数E(:,:,2)=randi(5,10,5)%打印最大为5的随机数E(:,:,3)=randn(10,5)%打印均值......
  • 【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划(Matlab代码实
    ......
  • 利用遗传算法解决TSP问题
    TSP(traveling salesman problem,旅行商问题)是典型的 NP 完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还未找到一个多项式时间的有效算法。TSP 问题可描述为:已知n个城市相互之间的距离,某一旅行商从某个城市出发访问每个城市一次......
  • 【matlab】【2024年】【优化算法】【黑风筝算法】【BKA】【附带论文中英翻译网页版】
            本文创新性地提出了黑风筝算法(BKA),这是一种受黑风筝迁徙和掠食行为启发的元启发式优化算法。BKA集成了柯西突变策略和Leader策略,增强了算法的全局搜索能力和收敛速度。这种新颖的组合在探索全球解决方案和利用本地信息之间取得了良好的平衡。在CEC-2022和CEC-20......
  • matlab简单信号处理方法整理
     机器学习与数据预测——信号处理MachineLearningandDataPrediction--SignalProcessingContents1.泰勒级数应用Taylorseriesapplication1.1.diff,int,cumsum函数用法1.2.对带有边界的函数求其泰勒展开式2.傅里叶级数与傅里叶变换FourierseriesandFouriertrans......
  • 010_documentation_in_Matlab中的帮助与文档
    Matlab中的帮助与文档1.前言一眨眼已经写了十篇文章。000在Matlab中使用Python包CoolProp001Matlab运行时间测试与时间复杂度分析002避免使用for循环003Matlab中的向量约定004Matlab中的矩阵约定005Matlab中的数组索引006Matlab中的逻辑数组索引007Matlab学习的启动与加......
  • 恒温恒湿空气调节系统设计:基于MATLAB的恒温恒湿空气调节系统建模和仿真,包括空气调节系
    鱼弦:公众号【红尘灯塔】,CSDN内容合伙人、CSDN新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)基于MATLAB的恒温恒湿空气调节系统设计:原理、应用、实现与分析1.恒温恒湿空气......