首页 > 编程语言 >TSP旅行商问题——SA模拟退火算法,SA+GA组合算法(代码解释)

TSP旅行商问题——SA模拟退火算法,SA+GA组合算法(代码解释)

时间:2024-03-24 12:02:39浏览次数:31  
标签:length solution loc2 算法 模拟退火 new SA cities population

SA

代码直接用就行,成功率极高

import random
import numpy as np
import matplotlib.pyplot as plt

# randomly generate the map with constraint of [-100, 100]
def gen_cities(city_num, random_state=True):
    if random_state:
        cities = (np.random.uniform(0, 2, (city_num, 2))-1)*200
        np.savetxt('cities.txt', cities)
    else:
        cities = np.loadtxt('cities.txt')
    return cities

# get distance matrix
def get_distance_mateix(cities):
    distances = np.zeros((len(cities), len(cities)))
    for i in range(len(cities)):
        for j in range(len(cities)):
            distances[i][j] = np.sqrt((cities[i][0]-cities[j][0])**2 + (cities[i][1]-cities[j][1])**2)

    return distances


# plot cities on a graph
def plot_map(cities, path):
    plt.figure(figsize=(10,10), dpi=100)
    plt.scatter(cities[:,0], cities[:,1], s=150)
    for i in range(len(cities)-1):
        plt.plot([cities[path[i]][0], cities[path[i+1]][0]], [cities[path[i]][1], cities[path[i+1]][1]], c='r')
    plt.plot([cities[path[0]][0], cities[path[len(cities)-1]][0]], [cities[path[0]][1], cities[path[len(cities)-1]][1]], c='r')
    plt.savefig('cities.png')

# find fittest path called every generation
def find_fittest(routes_length, pop_size):
    key = 10000000000
    fittest = 0
    for i in range(pop_size):
        if routes_length[i] < key:
            key = routes_length[i]
            fittest = i
    return fittest

def SA(cities, distances):
    num = cities.shape[0]
    """***********退火系数**********"""
    delta = 0.99
    t = 100
    tk = 1

    solution_new = np.arange(num)
    solution_current = solution_new.copy()
    value_current = 99999
    solution_best = solution_new.copy()
    value_best = 99999
    peak_length = []
    peak = []
    hillside = []
    hillside_length = []
    while t > tk:
        for i in np.arange(1000):
            if np.random.rand() > 0.5:
                while True:
                    loc1 = int(np.ceil(np.random.rand() * (num - 1)))
                    loc2 = int(np.ceil(np.random.rand() * (num - 1)))
                    if loc1 != loc2:
                        break
                solution_new[loc1], solution_new[loc2] = solution_new[loc2], solution_new[loc1]

            else:
                while True:
                    loc1 = int(np.ceil(np.random.rand() * (num - 1)))
                    loc2 = int(np.ceil(np.random.rand() * (num - 1)))
                    loc3 = int(np.ceil(np.random.rand() * (num - 1)))
                    if (loc1 != loc2) & (loc2 != loc3) & (loc1 != loc3):
                        break

                if loc1 > loc2:
                    loc1, loc2 = loc2, loc1
                if loc2 > loc3:
                    loc2, loc3 = loc3, loc2
                if loc1 > loc2:
                    loc1, loc2 = loc2, loc1
                loc1_loc2 = solution_new[loc1:loc2].copy()
                solution_new[loc1:loc3 - loc2 + 1 + loc1] = solution_new[loc2:loc3 + 1].copy()
                solution_new[loc3 - loc2 + 1 + loc1:loc3 + 1] = loc1_loc2.copy()
            value_new = 0
            for j in range(num - 1):
                value_new += distances[solution_new[j]][solution_new[j + 1]]
            value_new += distances[solution_new[0]][solution_new[num - 1]]

            if value_new < value_current:
                value_current = value_new
                solution_current = solution_new.copy()
                hillside_length.append(value_new)
                hillside.append(solution_new)

                if value_new < value_best:
                    value_best = value_new
                    solution_best = solution_new.copy()
                    peak_length.append(value_best)
                    peak.append(solution_best)
            else: 
                if np.random.rand() < np.exp(-(value_new - value_current) / t):
                    value_current = value_new
                    solution_current = solution_new.copy()
                    hillside_length.append(value_new)
                    hillside.append(solution_new)
                else:
                    solution_new = solution_current.copy()
        t = delta * t


    return peak_length, peak, hillside_length, hillside


def main():
    cities = gen_cities(city_num=50, random_state=True)
    distances = get_distance_mateix(cities)
    best_lengths, beat_paths, hillside_length, hillside = SA(cities, distances)
    index = find_fittest(best_lengths, len(best_lengths))
    best_path = beat_paths[index]
    print("Best path is:", best_path, "with length", best_lengths[index], '\n')
    for i in range(len(hillside_length)):
        print('length=', hillside_length[i], '\n')
    for i in range(len(best_lengths)):
        print('peak_length=', best_lengths[i], '\n')
    plot_map(cities, beat_paths[index])

if __name__=="__main__":
    main()
    plt.show()

上面分别为50点和100点的运行图,都是第一次生成就直接找到全局最优解,后面经过几十次测试大概感觉全局最优解的概率在百分之80到90之间,点少的情况太简单就不展示了,可以接近百分之百的全局最优解(刚好围成一圈并且没有线段交叉)

 我也在代码中添加了记录爬山过程的部分和每一个山峰(极大值点),感觉看着结果时增时降也是很有趣的,就好像自己在爬山一样(不过爬山过程太长了,爬的实在是太累了)

我发现在二维的低维空间下退火算法相对与遗传算法有碾压性的优势:

  1. 扰动方式简单,退火算法中我仅仅采用二点交换与三角交换进行扰动,不需要有序交叉或者单点变异,极大程度地降低了结果地不稳定性。
  2. 资源要求少,退火算法的初始种群仅有1个,但是仍然能够以出色的概率找到全局最优解,本质上是节省了非常多的时间在搜索与筛选上面的
  3. 效果好,遗传算法在8点以前可以做到大于二分之一的概率找到全局最优解,但是超过9点之后出现全局最优解的概率几乎是零(我认为是路径变复杂后种群数量不足导致的)

SA+GA

后来老师说可以用遗传算法优化退火算法的初始种群,于是我就做了一个缝合版

import random
import numpy as np
import matplotlib.pyplot as plt

# randomly generate the map with constraint of [-100, 100]
def gen_cities(city_num, random_state=True):
    if random_state:
        cities = (np.random.rand(city_num,2)-0.5)*200
        np.savetxt('cities.txt', cities)
    else:
        cities = np.loadtxt('cities.txt')
    return cities

# get distance matrix
def get_distance_mateix(cities):
    distances = np.zeros((len(cities), len(cities)))
    for i in range(len(cities)):
        for j in range(len(cities)):
            distances[i][j] = np.sqrt((cities[i][0]-cities[j][0])**2 + (cities[i][1]-cities[j][1])**2)

    return distances


# plot cities on a graph
def plot_map(cities, path):
    plt.figure(figsize=(10,10), dpi=100)
    plt.scatter(cities[:,0], cities[:,1], s=150)
    for i in range(len(cities)-1):
        plt.plot([cities[path[i]][0], cities[path[i+1]][0]], [cities[path[i]][1], cities[path[i+1]][1]], c='r')
    plt.plot([cities[path[0]][0], cities[path[len(cities)-1]][0]], [cities[path[0]][1], cities[path[len(cities)-1]][1]], c='r')
    plt.savefig('cities.png')

# calculates distance between 2 cities
def calc_distance(distances, city1, city2):
    return distances[city1][city2]  # ord('A')=65


# creates a random route
def create_route(cities):
    shuffled = random.sample(range(len(cities)), len(cities))
    return shuffled


# calculates length of an route
def calc_route_length(population, distances, cities, routes_length, fitness):
    pop_size = len(population)
    for i in range(pop_size):
        route_l = 0
        for j in range(1, len(cities)):
            route_l = route_l + calc_distance(distances, population[i][j - 1], population[i][j])
        # route_l = route_l + calc_distance(population[i][len(cities)-1], population[i][1]) calculate distance from last to first
        routes_length[i] = route_l
        fitness[i] = 1 / routes_length[i]
    return routes_length, fitness
    # pop_size = len(fitness)
    # for i in range(pop_size):
    #     route_l = 0
    #     for j in range(0, len(cities)-1):
    #         route_l += distances[population[i][j]][population[i][j + 1]]
    #     route_l += distances[population[i][0]][population[i][len(cities)-1]]
    #     routes_length[i] = route_l
    #     fitness[i] = 1 / route_l
    #
    # print(routes_length)
    #
    # return routes_length, fitness


# creates starting population
def create_population(pop_size, cities):
    population = []
    for i in range(pop_size):
        population.append(create_route(cities))
    return population


def swap_mutation(ind, cities, population):
    a, b = random.sample(range(len(cities)), 2)
    population[ind][a], population[ind][b] = population[ind][b], population[ind][a]
    unique_cities = set()
    for city in population[ind]:
        if city in unique_cities:
            population[ind] = create_route(cities)
            break
        unique_cities.add(city)

    return population


    # print("Mutated path: ", population[ind])


"""*********这玩意是不是叫partially_mapped_crossover**********"""
def partially_matched_crossover(ind1, ind2, cities):
    size = len(ind1)
    site1 = random.randint(0, size - 1)
    site2 = random.randint(site1 + 1, size)
    child1 = [-1] * size
    child2 = [-1] * size

    child1[site1:site2] = ind1[site1:site2]
    child2[site1:site2] = ind2[site1:site2]

    for i in range(size):
        if i < site1 or i >= site2:
            for j in range(size):
                if ind2[j] not in child1:
                    child1[i] = ind2[j]
                    break
            for j in range(size):
                if ind1[j] not in child2:
                    child2[i] = ind1[j]
                    break

    return child1, child2



"""********适应度缩放选择  减缓了轮盘选择的收敛  增加多样性*********"""

# function that picks a parent Fitness Proportionate Selection
def roulette_wheel_selection(pop_size, fitness):

    maximum = fitness[pop_size-1]
    minimum = fitness[0]

    a = (maximum - minimum) / (maximum - minimum + pop_size)
    b = maximum - a * maximum

    sum_fitness = sum(fitness)
    cumulative_probability = 0
    for i in range(pop_size):
        fitness[i] = (a * fitness[i] + b) / sum_fitness
        cumulative_probability += fitness[i]

    selected = random.uniform(0, 1)
    index = pop_size - 1
    for i in range(pop_size - 1):
        if fitness[i] < selected :
            fitness[i + 1] += fitness[i]
        else:
            index = i
            break

    return index


"""****************退火********************"""
def tuihuo(route, distances):
    delta = 0.99  #原来为0.99
    t = 100
    tk = 1

    solution_new = route
    solution_current = solution_new.copy()
    value_current = 99999
    solution_best = solution_new.copy()
    value_best = 99999

    """记录爬山过程
    peak_length = []
    peak = []
    hillside = []
    hillside_length = []
    """

    while t > tk:
        for i in np.arange(1000):
            if np.random.rand() > 0.5:
                while True:
                    loc1 = int(np.ceil(np.random.rand() * (num - 1)))
                    loc2 = int(np.ceil(np.random.rand() * (num - 1)))
                    if loc1 != loc2:
                        break
                solution_new[loc1], solution_new[loc2] = solution_new[loc2], solution_new[loc1]

            else:
                while True:
                    loc1 = int(np.ceil(np.random.rand() * (num - 1)))
                    loc2 = int(np.ceil(np.random.rand() * (num - 1)))
                    loc3 = int(np.ceil(np.random.rand() * (num - 1)))
                    if (loc1 != loc2) & (loc2 != loc3) & (loc1 != loc3):
                        break

                if loc1 > loc2:
                    loc1, loc2 = loc2, loc1
                if loc2 > loc3:
                    loc2, loc3 = loc3, loc2
                if loc1 > loc2:
                    loc1, loc2 = loc2, loc1
                loc1_loc2 = solution_new[loc1:loc2].copy()
                solution_new[loc1:loc3 - loc2 + 1 + loc1] = solution_new[loc2:loc3 + 1].copy()
                solution_new[loc3 - loc2 + 1 + loc1:loc3 + 1] = loc1_loc2.copy()
            value_new = 0
            for j in range(num - 1):
                value_new += distances[solution_new[j]][solution_new[j + 1]]
            value_new += distances[solution_new[0]][solution_new[num - 1]]

            if value_new < value_current:
                value_current = value_new
                solution_current = solution_new.copy()
                # hillside_length.append(value_new)
                # hillside.append(solution_new)

                if value_new < value_best:
                    value_best = value_new
                    solution_best = solution_new.copy()
                    # peak_length.append(value_best)
                    # peak.append(solution_best)
            else:
                if np.random.rand() < np.exp(-(value_new - value_current) / t):
                    value_current = value_new
                    solution_current = solution_new.copy()
                    # hillside_length.append(value_new)
                    # hillside.append(solution_new)
                else:
                    solution_new = solution_current.copy()
        t = delta * t
    return solution_best



# find fittest path called every generation
def find_fittest(routes_length, pop_size):
    key = 10000000000
    fittest = 0
    for i in range(pop_size):
        if routes_length[i] < key:
            key = routes_length[i]
            fittest = i
    return fittest


# sorts parallely the lists
#def sort_alongside(routes_length, population):
#    routes_length, population = (list(i) for i in zip(*sorted(zip(routes_length, population))))


# initialize algorithm
def main():

    pop_size = 30
    mutate_prob = 0.1
    n_generations = 30
    routes_length = [0]*pop_size
    fitness = [0]*pop_size
    best_path = 10000000000


    cities = gen_cities(city_num=8,random_state=True)
    best_route = [0] * cities.shape[0]
    distances = get_distance_mateix(cities)
    population = create_population(pop_size=pop_size, cities=cities)
    # print("Population initialization:", "\n", population)
    routes_length, fitness = calc_route_length(population, distances, cities, routes_length, fitness)
    # print("Population's paths length:", "\n", routes_length)

    for j in range(n_generations):
        for i in range(0, pop_size, 2):
            # pick parents for crossover
            parent1 = roulette_wheel_selection(pop_size, fitness)
            parent2 = roulette_wheel_selection(pop_size, fitness)
            # always pick different parents (not necessary)
            while True:
                if parent1 == parent2:
                    parent2 = roulette_wheel_selection(pop_size, fitness)
                else:
                    break
            # update population
            population[i], population[i + 1] = partially_matched_crossover(population[parent1], population[parent2], cities)
            # calculate lengths for updated generation
            routes_length, fitness = calc_route_length(population, distances, cities, routes_length, fitness)

        # pick the paths for mutation based on a probability
        for i in range(pop_size):
            rand = random.uniform(0, 1)
            if rand < mutate_prob:
                population = swap_mutation(i, cities, population)


        if i % 5 == 0:
            for i in range(pop_size):
                population[i] = tuihuo(population[i], distances)


        # calculate lengths after mutation
        routes_length, fitness = calc_route_length(population, distances, cities, routes_length, fitness)

        # find best path overall
        if routes_length[find_fittest(routes_length, pop_size)] < best_path:
            index = find_fittest(routes_length, pop_size)
            best_path = routes_length[index]
            best_route = population[index]

        # print("Best route of generation", j+1, ": ", population[find_fittest()], "\n" "Route length: ",
        #     routes_length[find_fittest()])
        # print("Population of generation", j+1, ": \n", population)
        # print("Routes lengths:", routes_length, "\n")
    index = find_fittest(routes_length, pop_size)
    print("Best path is:", best_route, "with length", best_path)
    plot_map(cities, population[index])

if __name__=="__main__":
    main()
    plt.show()

 不幸的是,导致产出结果并不是很好,代码部分应该还有很大不足的地方,所以就不展示图片了。

标签:length,solution,loc2,算法,模拟退火,new,SA,cities,population
From: https://blog.csdn.net/m0_61546651/article/details/136969212

相关文章

  • java数据结构与算法刷题-----LeetCode75. 颜色分类
    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846文章目录1.双指针两次遍历2.三指针1.双指针两次遍历解题思路:时间复杂度O(......
  • java数据结构与算法刷题-----LeetCode451. 根据字符出现频率排序
    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846文章目录1.hash统计出现次数后排序2.桶排序1.hash统计出现次数后排序解题思路:时间复杂度O(......
  • Myelsa的Python算法之旅(高铁直达)
    博客个人主页(非风V非雨):https://blog.csdn.net/ygb_1024?spm=1010.2135.3001.5421Python-VBA编程500例算法清单(持续更新中)Myelsa的Python算法之旅创作清单算法明细对应网址博客个人主页(非风V非雨)非风V非雨-CSDN博客Myelsa的Python算法之旅(高铁直达)Myelsa的Python算法......
  • 算法 链表 206.反转链表
    文章目录一.题目二.代码三.总结一.题目题意:反转一个单链表。示例:输入:1->2->3->4->5->NULL输出:5->4->3->2->1->NULL二.代码publicclassReverseList{publicstaticvoidmain(String[]args){ListNode2head=newListNode2(1,newList......
  • 算法 链表 160.链表相交
    文章目录一.题目二.代码三.总结一.题目力扣160:给你两个单链表的头节点headA和headB,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回null。二.代码publicclassLeetCode160{staticclassListNode{intval;L......
  • Linux环境下使用Eclipse Paho C 实现(MQTT Client)同步模式发布和订阅Message
    目录概述1同步模式和异步模式1.1同步模式1.2异步模式2下载和安装paho.mqtt.c3同步方式发布和订阅消息功能实现3.1MQTTClient参数配置3.2初始化MQTTClient3.3发布消息功能3.4订阅消息功能3.5解析订阅的信息4编译和测试4.1编译代码4.2运行5验证MQ......
  • 关于使用PZ6808L开发板,调试USART3的问题分析
    首先,写代码方面相信,大家都可以搞定,网上也有很多人写的程序,这里关于如何驱动USART3,就不进行赘述了。关于这款开发板RS232模块,是给F4使用的,但是他留了两个接线柱,就是F1的USART3的两个接口。接下来就是接线的问题,如下图,将这个4个接线柱,两两交叉进行连接,跳线帽肯定搞不了,如下图......
  • 洛谷题单算法1-6二分查找与二分答案
    代码仅供参考,不足之处望理解。P2249【深基13.例1】查找#include<iostream>usingnamespacestd;constintN=1e6+5;intn,m,a[N];intmain(){ios::sync_with_stdio(false);//输入cin>>n>>m;for(inti=1;i<=n;i++)cin>>a[i];for(inti=1......
  • 基础算法--双指针练习总结
    Acwing部分练习:799.最长连续不重复子序列暴力未AC(53points):#include<iostream>usingnamespacestd;constintN=1e5+5;intn,a[N];boolcheck(intl,intr){for(inti=l;i<=r;i++){for(intj=i;j<=r;j++){if(i!=j&&a[i]==a[j]){......
  • SAM 练习题
    两个技巧:SAM匹配,删除最前面字符后缀树路径上,字符串长度连续一个区间的子串可以倍增得到线段树合并维护\(\text{endpos}\)SP687link考虑周期转Border,一个存在的Border为\(\text{lcp}(i,j)\),对应周期为\(|i-j|\),周期出现整次数为\(\dfrac{|i-j|}{\text{lcp}(......