首页 > 编程语言 >Python爬虫之scrapy构造并发送请求

Python爬虫之scrapy构造并发送请求

时间:2022-10-14 11:35:57浏览次数:59  
标签:node item Python Request 爬虫 url scrapy meta


scrapy数据建模与请求

学习目标:
  1. 应用 在scrapy项目中进行建模
  2. 应用 构造Request对象,并发送请求
  3. 应用 利用meta参数在不同的解析函数中传递数据

1. 数据建模

通常在做项目的过程中,在items.py中进行数据建模

1.1 为什么建模

  1. 定义item即提前规划好哪些字段需要抓,防止手误,因为定义好之后,在运行过程中,系统会自动检查
  2. 配合注释一起可以清晰的知道要抓取哪些字段,没有定义的字段不能抓取,在目标字段少的时候可以使用字典代替
  3. 使用scrapy的一些特定组件需要Item做支持,如scrapy的ImagesPipeline管道类,百度搜索了解更多

1.2 如何建模

在items.py文件中定义要提取的字段:

class MyspiderItem(scrapy.Item): 
name = scrapy.Field() # 讲师的名字
title = scrapy.Field() # 讲师的职称
desc = scrapy.Field() # 讲师的介绍

1.3 如何使用模板类

模板类定义以后需要在爬虫中导入并且实例化,之后的使用方法和使用字典相同

job.py:

from myspider.items import MyspiderItem   # 导入Item,注意路径
...
def parse(self, response)

item = MyspiderItem() # 实例化后可直接使用

item['name'] = node.xpath('./h3/text()').extract_first()
item['title'] = node.xpath('./h4/text()').extract_first()
item['desc'] = node.xpath('./p/text()').extract_first()

print(item)

注意:

  1. from myspider.items import MyspiderItem这一行代码中 注意item的正确导入路径,忽略pycharm标记的错误
  2. python中的导入路径要诀:从哪里开始运行,就从哪里开始导入

1.4 开发流程总结

  1. 创建项目

    scrapy startproject 项目名
  2. 明确目标

    在items.py文件中进行建模
  3. 创建爬虫

    3.1 创建爬虫

    scrapy genspider 爬虫名 允许的域
    3.2 完成爬虫

    修改start_urls
    检查修改allowed_domains
    编写解析方法
  4. 保存数据

    在pipelines.py文件中定义对数据处理的管道

    在settings.py文件中注册启用管道

2. 翻页请求的思路

对于要提取如下图中所有页面上的数据该怎么办?

Python爬虫之scrapy构造并发送请求_字段

回顾requests模块是如何实现翻页请求的:

  1. 找到下一页的URL地址
  2. 调用requests.get(url)

scrapy实现翻页的思路:

  1. 找到下一页的url地址
  2. 构造url地址的请求对象,传递给引擎

3. 构造Request对象,并发送请求

3.1 实现方法

  1. 确定url地址
  2. 构造请求,scrapy.Request(url,callback)
  • callback:指定解析函数名称,表示该请求返回的响应使用哪一个函数进行解析
  1. 把请求交给引擎:yield scrapy.Request(url,callback)

3.2 网易招聘爬虫

通过爬取网易招聘的页面的招聘信息,学习如何实现翻页请求

地址:https://hr.163.com/position/list.do

思路分析:
  1. 获取首页的数据
  2. 寻找下一页的地址,进行翻页,获取数据
注意:
  1. 可以在settings中设置ROBOTS协议
# False表示忽略网站的robots.txt协议,默认为True
ROBOTSTXT_OBEY = False
  1. 可以在settings中设置User-Agent:
# scrapy发送的每一个请求的默认UA都是设置的这个User-Agent
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36'

3.3 代码实现

在爬虫文件的parse方法中:

......
# 提取下一页的href
next_url = response.xpath('//a[contains(text(),">")]/@href').extract_first()

# 判断是否是最后一页
if next_url != 'javascript:void(0)':

# 构造完整url
url = 'https://hr.163.com/position/list.do' + next_url

# 构造scrapy.Request对象,并yield给引擎
# 利用callback参数指定该Request对象之后获取的响应用哪个函数进行解析
yield scrapy.Request(url, callback=self.parse)
......

3.4 scrapy.Request的更多参数

scrapy.Request(url[,callback,method="GET",headers,body,cookies,meta,dont_filter=False])
参数解释
  1. 中括号里的参数为可选参数
  2. callback:表示当前的url的响应交给哪个函数去处理
  3. meta:实现数据在不同的解析函数中传递,meta默认带有部分数据,比如下载延迟,请求深度等
  4. dont_filter:默认为False,会过滤请求的url地址,即请求过的url地址不会继续被请求,对需要重复请求的url地址可以把它设置为Ture,比如贴吧的翻页请求,页面的数据总是在变化;start_urls中的地址会被反复请求,否则程序不会启动
  5. method:指定POST或GET请求
  6. headers:接收一个字典,其中不包括cookies
  7. cookies:接收一个字典,专门放置cookies
  8. body:接收json字符串,为POST的数据,发送payload_post请求时使用(在下一章节中会介绍post请求)

4. meta参数的使用

meta的作用:meta可以实现数据在不同的解析函数中的传递

在爬虫文件的parse方法中,提取详情页增加之前callback指定的parse_detail函数:

def parse(self,response):
...
yield scrapy.Request(detail_url, callback=self.parse_detail,meta={"item":item})
...

def parse_detail(self,response):
#获取之前传入的item
item = resposne.meta["item"]
特别注意
  1. meta参数是一个字典
  2. meta字典中有一个固定的键​​proxy​​,表示代理ip,关于代理ip的使用我们将在scrapy的下载中间件的学习中进行介绍

小结

  1. 完善并使用Item数据类:
  2. 在items.py中完善要爬取的字段
  3. 在爬虫文件中先导入Item
  4. 实力化Item对象后,像字典一样直接使用
  5. 构造Request对象,并发送请求:
  6. 导入scrapy.Request类
  7. 在解析函数中提取url
  8. yield scrapy.Request(url, callback=self.parse_detail, meta={})
  9. 利用meta参数在不同的解析函数中传递数据:
  10. 通过前一个解析函数 yield scrapy.Request(url, callback=self.xxx, meta={}) 来传递meta
  11. 在self.xxx函数中 response.meta.get(‘key’, ‘’) 或 response.meta[‘key’] 的方式取出传递的数据

参考代码

wangyi/spiders/job.py

import scrapy


class JobSpider(scrapy.Spider):
name = 'job'
# 2.检查允许的域名
allowed_domains = ['163.com']
# 1 设置起始的url
start_urls = ['https://hr.163.com/position/list.do']

def parse(self, response):
# 获取所有的职位节点列表
node_list = response.xpath('//*[@class="position-tb"]/tbody/tr')
# print(len(node_list))

# 遍历所有的职位节点列表
for num, node in enumerate(node_list):
# 索引为值除2取余为0的才是含有数据的节点,通过判断进行筛选
if num % 2 == 0:
item = {}

item['name'] = node.xpath('./td[1]/a/text()').extract_first()
item['link'] = node.xpath('./td[1]/a/@href').extract_first()
item['depart'] = node.xpath('./td[2]/text()').extract_first()
item['category'] = node.xpath('./td[3]/text()').extract_first()
item['type'] = node.xpath('./td[4]/text()').extract_first()
item['address'] = node.xpath('./td[5]/text()').extract_first()
item['num'] = node.xpath('./td[6]/text()').extract_first().strip()
item['date'] = node.xpath('./td[7]/text()').extract_first()
yield item

# 翻页处理
# 获取翻页url
part_url = response.xpath('//a[contains(text(),">")]/@href').extract_first()

# 判断是否为最后一页,如果不是最后一页则进行翻页操作
if part_url != 'javascript:void(0)':
# 拼接完整翻页url
next_url = 'https://hr.163.com/position/list.do' + part_url

yield scrapy.Request(
url=next_url,
callback=self.parse
)

wangyi/items.py

class WangyiItem(scrapy.Item):
# define the fields for your item here like:

name = scrapy.Field()
link = scrapy.Field()
depart = scrapy.Field()
category = scrapy.Field()
type = scrapy.Field()
address = scrapy.Field()
num = scrapy.Field()
date = scrapy.Field()


标签:node,item,Python,Request,爬虫,url,scrapy,meta
From: https://blog.51cto.com/u_15829196/5755960

相关文章

  • Python爬虫之scrapy模拟登陆
    scrapy模拟登陆学习目标:应用请求对象cookies参数的使用了解start_requests函数的作用应用构造并发送post请求1.回顾之前的模拟登陆的方法1.1requests模块是如何实现模......
  • Python爬虫之scrapy_redis原理分析并实现断点续爬以及分布式爬虫
    scrapy_redis原理分析并实现断点续爬以及分布式爬虫学习目标了解scrapy实现去重的原理了解scrapy中请求入队的条件掌握scrapy_redis基于url地址的增量式单机爬虫掌握scr......
  • Python爬虫之scrapy_redis概念作用和流程
    scrapy_redis概念作用和流程学习目标了解分布式的概念及特点了解scarpy_redis的概念了解scrapy_redis的作用了解scrapy_redis的工作流程在前面scrapy框架中我们已经能够......
  • python对utf-8的中文转换
    #python3默认支持utf-8,因此对于\uXXXX这种格式的中文,可以直接转换,但经常爬虫抓取回来的中文是\\uXXXX格式,因此需要进行转换s1='\u65f6\u4e0d\u53ef\u5931\uff0c\u65f6\u4......
  • python2 | python3 | 文本清洗正则匹配
    python3写的清洗文本代码在python2用不了,会出现各种编码问题,经过痛苦的一晚上加班终于搞完了,记录一下。python2defclean_text(content):"""去除话题词,链接,@用户,图......
  • python 查看文件最新的几行
      importlinecachedefget_line_count(filename):count=0withopen(filename,'r')asf:whileTrue:buffer=f.read(1024*......
  • Python Select 解析
    首先列一下,sellect、poll、epoll三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中......
  • 力扣609(java&python)-在系统中查找重复文件(中等)
    给你一个目录信息列表 paths,包括目录路径,以及该目录中的所有文件及其内容,请你按路径返回文件系统中的所有重复文件。答案可按任意顺序返回。一组重复的文件至少包括......
  • python重拾第十天-协程、异步IO
    本节内容Gevent协程Select\Poll\Epoll异步IO与事件驱动引子到目前为止,我们已经学了网络并发编程的2个套路,多进程,多线程,这哥俩的优势和劣势都非常的明显,我们一起来回......
  • python:backgroundremover安装及运行中报错的处理(backgroundremover 0.1.9)
    一,安装backgroundremover:1,官方站地址:https://github.com/nadermx/backgroundremover2,从命令行安装[lhdop@blog~]$pip3installbackgroundremover3,安装......