首页 > 编程语言 >异步编程利器:CompletableFuture详解

异步编程利器:CompletableFuture详解

时间:2022-10-14 10:03:19浏览次数:104  
标签:异步 System 任务 详解 CompletableFuture println public out

前言

最近刚好使用CompeletableFuture优化了项目中的代码,所以跟大家一起学习CompletableFuture。

异步编程利器:CompletableFuture详解_线程池

  • 公众号:捡田螺的小男孩

一个例子回顾 Future

因为CompletableFuture实现了​​Future​​接口,我们先来回顾Future吧。

Future是Java5新加的一个接口,它提供了一种异步并行计算的功能。如果主线程需要执行一个很耗时的计算任务,我们就可以通过future把这个任务放到异步线程中执行。主线程继续处理其他任务,处理完成后,再通过Future获取计算结果。

来看个简单例子吧,假设我们有两个任务服务,一个查询用户基本信息,一个是查询用户勋章信息。如下,

public class UserInfoService {

public UserInfo getUserInfo(Long userId) throws InterruptedException {
Thread.sleep(300);//模拟调用耗时
return new UserInfo("666", "捡田螺的小男孩", 27); //一般是查数据库,或者远程调用返回的
}
}

public class MedalService {

public MedalInfo getMedalInfo(long userId) throws InterruptedException {
Thread.sleep(500); //模拟调用耗时
return new MedalInfo("666", "守护勋章");
}
}

接下来,我们来演示下,在主线程中是如何使用Future来进行异步调用的。

public class FutureTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

ExecutorService executorService = Executors.newFixedThreadPool(10);

UserInfoService userInfoService = new UserInfoService();
MedalService medalService = new MedalService();
long userId =666L;
long startTime = System.currentTimeMillis();

//调用用户服务获取用户基本信息
FutureTask<UserInfo> userInfoFutureTask = new FutureTask<>(new Callable<UserInfo>() {
@Override
public UserInfo call() throws Exception {
return userInfoService.getUserInfo(userId);
}
});
executorService.submit(userInfoFutureTask);

Thread.sleep(300); //模拟主线程其它操作耗时

FutureTask<MedalInfo> medalInfoFutureTask = new FutureTask<>(new Callable<MedalInfo>() {
@Override
public MedalInfo call() throws Exception {
return medalService.getMedalInfo(userId);
}
});
executorService.submit(medalInfoFutureTask);

UserInfo userInfo = userInfoFutureTask.get();//获取个人信息结果
MedalInfo medalInfo = medalInfoFutureTask.get();//获取勋章信息结果

System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms");
}
}

运行结果:

总共用时806ms

如果我们不使用Future进行并行异步调用,而是在主线程串行进行的话,耗时大约为300+500+300 = 1100 ms。可以发现,future+线程池异步配合,提高了程序的执行效率。

但是Future对于结果的获取,不是很友好,只能通过阻塞或者轮询的方式得到任务的结果。

  • Future.get() 就是阻塞调用,在线程获取结果之前get方法会一直阻塞
  • Future提供了一个isDone方法,可以在程序中轮询这个方法查询执行结果。

阻塞的方式和异步编程的设计理念相违背,而轮询的方式会耗费无谓的CPU资源。因此,JDK8设计出CompletableFuture。CompletableFuture提供了一种观察者模式类似的机制,可以让任务执行完成后通知监听的一方。

一个例子走进CompletableFuture

我们还是基于以上Future的例子,改用CompletableFuture 来实现

public class FutureTest {

public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {

UserInfoService userInfoService = new UserInfoService();
MedalService medalService = new MedalService();
long userId =666L;
long startTime = System.currentTimeMillis();

//调用用户服务获取用户基本信息
CompletableFuture<UserInfo> completableUserInfoFuture = CompletableFuture.supplyAsync(() -> userInfoService.getUserInfo(userId));

Thread.sleep(300); //模拟主线程其它操作耗时

CompletableFuture<MedalInfo> completableMedalInfoFuture = CompletableFuture.supplyAsync(() -> medalService.getMedalInfo(userId));

UserInfo userInfo = completableUserInfoFuture.get(2,TimeUnit.SECONDS);//获取个人信息结果
MedalInfo medalInfo = completableMedalInfoFuture.get();//获取勋章信息结果
System.out.println("总共用时" + (System.currentTimeMillis() - startTime) + "ms");

}
}

可以发现,使用CompletableFuture,代码简洁了很多。CompletableFuture的supplyAsync方法,提供了异步执行的功能,线程池也不用单独创建了。实际上,它CompletableFuture使用了默认线程池是ForkJoinPool.commonPool

CompletableFuture提供了几十种方法,辅助我们的异步任务场景。这些方法包括创建异步任务、任务异步回调、多个任务组合处理等方面。我们一起来学习吧

CompletableFuture使用场景

异步编程利器:CompletableFuture详解_线程池_02

创建异步任务

CompletableFuture创建异步任务,一般有supplyAsync和runAsync两个方法

异步编程利器:CompletableFuture详解_线程池_03创建异步任务

  • supplyAsync执行CompletableFuture任务,支持返回值
  • runAsync执行CompletableFuture任务,没有返回值。

supplyAsync方法

//使用默认内置线程池ForkJoinPool.commonPool(),根据supplier构建执行任务
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
//自定义线程,根据supplier构建执行任务
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

runAsync方法

//使用默认内置线程池ForkJoinPool.commonPool(),根据runnable构建执行任务
public static CompletableFuture<Void> runAsync(Runnable runnable)
//自定义线程,根据runnable构建执行任务
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)

实例代码如下:

public class FutureTest {

public static void main(String[] args) {
//可以自定义线程池
ExecutorService executor = Executors.newCachedThreadPool();
//runAsync的使用
CompletableFuture<Void> runFuture = CompletableFuture.runAsync(() -> System.out.println("run,关注公众号:捡田螺的小男孩"), executor);
//supplyAsync的使用
CompletableFuture<String> supplyFuture = CompletableFuture.supplyAsync(() -> {
System.out.print("supply,关注公众号:捡田螺的小男孩");
return "捡田螺的小男孩"; }, executor);
//runAsync的future没有返回值,输出null
System.out.println(runFuture.join());
//supplyAsync的future,有返回值
System.out.println(supplyFuture.join());
executor.shutdown(); // 线程池需要关闭
}
}
//输出
run,关注公众号:捡田螺的小男孩
null
supply,关注公众号:捡田螺的小男孩捡田螺的小男孩

任务异步回调

异步编程利器:CompletableFuture详解_线程池_04

1. thenRun/thenRunAsync

public CompletableFuture<Void> thenRun(Runnable action);
public CompletableFuture<Void> thenRunAsync(Runnable action);

CompletableFuture的thenRun方法,通俗点讲就是,做完第一个任务后,再做第二个任务。某个任务执行完成后,执行回调方法;但是前后两个任务没有参数传递,第二个任务也没有返回值

public class FutureThenRunTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> orgFuture = CompletableFuture.supplyAsync(
()->{
System.out.println("先执行第一个CompletableFuture方法任务");
return "捡田螺的小男孩";
}
);

CompletableFuture thenRunFuture = orgFuture.thenRun(() -> {
System.out.println("接着执行第二个任务");
});

System.out.println(thenRunFuture.get());
}
}
//输出
先执行第一个CompletableFuture方法任务
接着执行第二个任务
null

thenRun 和thenRunAsync有什么区别呢?可以看下源码哈:

   private static final Executor asyncPool = useCommonPool ?
ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

public CompletableFuture<Void> thenRun(Runnable action) {
return uniRunStage(null, action);
}

public CompletableFuture<Void> thenRunAsync(Runnable action) {
return uniRunStage(asyncPool, action);
}

如果你执行第一个任务的时候,传入了一个自定义线程池:

  • 调用thenRun方法执行第二个任务时,则第二个任务和第一个任务是共用同一个线程池
  • 调用thenRunAsync执行第二个任务时,则第一个任务使用的是你自己传入的线程池,第二个任务使用的是ForkJoin线程池

TIPS: 后面介绍的thenAccept和thenAcceptAsync,thenApply和thenApplyAsync等,它们之间的区别也是这个哈。

2.thenAccept/thenAcceptAsync

CompletableFuture的thenAccept方法表示,第一个任务执行完成后,执行第二个回调方法任务,会将该任务的执行结果,作为入参,传递到回调方法中,但是回调方法是没有返回值的。

public class FutureThenAcceptTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> orgFuture = CompletableFuture.supplyAsync(
()->{
System.out.println("原始CompletableFuture方法任务");
return "捡田螺的小男孩";
}
);

CompletableFuture thenAcceptFuture = orgFuture.thenAccept((a) -> {
if ("捡田螺的小男孩".equals(a)) {
System.out.println("关注了");
}

System.out.println("先考虑考虑");
});

System.out.println(thenAcceptFuture.get());
}
}

3. thenApply/thenApplyAsync

CompletableFuture的thenApply方法表示,第一个任务执行完成后,执行第二个回调方法任务,会将该任务的执行结果,作为入参,传递到回调方法中,并且回调方法是有返回值的。

public class FutureThenApplyTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> orgFuture = CompletableFuture.supplyAsync(
()->{
System.out.println("原始CompletableFuture方法任务");
return "捡田螺的小男孩";
}
);

CompletableFuture<String> thenApplyFuture = orgFuture.thenApply((a) -> {
if ("捡田螺的小男孩".equals(a)) {
return "关注了";
}

return "先考虑考虑";
});

System.out.println(thenApplyFuture.get());
}
}
//输出
原始CompletableFuture方法任务
关注了

4. exceptionally

CompletableFuture的exceptionally方法表示,某个任务执行异常时,执行的回调方法;并且有抛出异常作为参数,传递到回调方法。

public class FutureExceptionTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> orgFuture = CompletableFuture.supplyAsync(
()->{
System.out.println("当前线程名称:" + Thread.currentThread().getName());
throw new RuntimeException();
}
);

CompletableFuture<String> exceptionFuture = orgFuture.exceptionally((e) -> {
e.printStackTrace();
return "你的程序异常啦";
});

System.out.println(exceptionFuture.get());
}
}
//输出
当前线程名称:ForkJoinPool.commonPool-worker-1
java.util.concurrent.CompletionException: java.lang.RuntimeException
at java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.java:273)
at java.util.concurrent.CompletableFuture.completeThrowable(CompletableFuture.java:280)
at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1592)
at java.util.concurrent.CompletableFuture$AsyncSupply.exec(CompletableFuture.java:1582)
at java.util.concurrent.ForkJoinTask.doExec(ForkJoinTask.java:289)
at java.util.concurrent.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1056)
at java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1692)
at java.util.concurrent.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:157)
Caused by: java.lang.RuntimeException
at cn.eovie.future.FutureWhenTest.lambda$main$0(FutureWhenTest.java:13)
at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1590)
... 5 more
你的程序异常啦

5. whenComplete方法

CompletableFuture的whenComplete方法表示,某个任务执行完成后,执行的回调方法,无返回值;并且whenComplete方法返回的CompletableFuture的result是上个任务的结果

public class FutureWhenTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> orgFuture = CompletableFuture.supplyAsync(
()->{
System.out.println("当前线程名称:" + Thread.currentThread().getName());
try {
Thread.sleep(2000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "捡田螺的小男孩";
}
);

CompletableFuture<String> rstFuture = orgFuture.whenComplete((a, throwable) -> {
System.out.println("当前线程名称:" + Thread.currentThread().getName());
System.out.println("上个任务执行完啦,还把" + a + "传过来");
if ("捡田螺的小男孩".equals(a)) {
System.out.println("666");
}
System.out.println("233333");
});

System.out.println(rstFuture.get());
}
}
//输出
当前线程名称:ForkJoinPool.commonPool-worker-1
当前线程名称:ForkJoinPool.commonPool-worker-1
上个任务执行完啦,还把捡田螺的小男孩传过来
666
233333
捡田螺的小男孩

6. handle方法

CompletableFuture的handle方法表示,某个任务执行完成后,执行回调方法,并且是有返回值的;并且handle方法返回的CompletableFuture的result是回调方法执行的结果。

public class FutureHandlerTest {

public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> orgFuture = CompletableFuture.supplyAsync(
()->{
System.out.println("当前线程名称:" + Thread.currentThread().getName());
try {
Thread.sleep(2000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "捡田螺的小男孩";
}
);

CompletableFuture<String> rstFuture = orgFuture.handle((a, throwable) -> {

System.out.println("上个任务执行完啦,还把" + a + "传过来");
if ("捡田螺的小男孩".equals(a)) {
System.out.println("666");
return "关注了";
}
System.out.println("233333");
return null;
});

System.out.println(rstFuture.get());
}
}
//输出
当前线程名称:ForkJoinPool.commonPool-worker-1
上个任务执行完啦,还把捡田螺的小男孩传过来
666
关注了

多个任务组合处理

异步编程利器:CompletableFuture详解_线程池_05

AND组合关系

异步编程利器:CompletableFuture详解_回调方法_06

thenCombine / thenAcceptBoth / runAfterBoth都表示:将两个CompletableFuture组合起来,只有这两个都正常执行完了,才会执行某个任务

区别在于:

  • thenCombine:会将两个任务的执行结果作为方法入参,传递到指定方法中,且有返回值
  • thenAcceptBoth: 会将两个任务的执行结果作为方法入参,传递到指定方法中,且无返回值
  • runAfterBoth不会把执行结果当做方法入参,且没有返回值。
public class ThenCombineTest {

public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {

CompletableFuture<String> first = CompletableFuture.completedFuture("第一个异步任务");
ExecutorService executor = Executors.newFixedThreadPool(10);
CompletableFuture<String> future = CompletableFuture
//第二个异步任务
.supplyAsync(() -> "第二个异步任务", executor)
// (w, s) -> System.out.println(s) 是第三个任务
.thenCombineAsync(first, (s, w) -> {
System.out.println(w);
System.out.println(s);
return "两个异步任务的组合";
}, executor);
System.out.println(future.join());
executor.shutdown();

}
}
//输出
第一个异步任务
第二个异步任务
两个异步任务的组合

OR 组合的关系

异步编程利器:CompletableFuture详解_线程池_07

applyToEither / acceptEither / runAfterEither 都表示:将两个CompletableFuture组合起来,只要其中一个执行完了,就会执行某个任务。

区别在于:

  • applyToEither:会将已经执行完成的任务,作为方法入参,传递到指定方法中,且有返回值
  • acceptEither: 会将已经执行完成的任务,作为方法入参,传递到指定方法中,且无返回值
  • runAfterEither:不会把执行结果当做方法入参,且没有返回值。
public class AcceptEitherTest {
public static void main(String[] args) {
//第一个异步任务,休眠2秒,保证它执行晚点
CompletableFuture<String> first = CompletableFuture.supplyAsync(()->{
try{

Thread.sleep(2000L);
System.out.println("执行完第一个异步任务");}
catch (Exception e){
return "第一个任务异常";
}
return "第一个异步任务";
});
ExecutorService executor = Executors.newSingleThreadExecutor();
CompletableFuture<Void> future = CompletableFuture
//第二个异步任务
.supplyAsync(() -> {
System.out.println("执行完第二个任务");
return "第二个任务";}
, executor)
//第三个任务
.acceptEitherAsync(first, System.out::println, executor);

executor.shutdown();
}
}
//输出
执行完第二个任务
第二个任务

AllOf

所有任务都执行完成后,才执行 allOf返回的CompletableFuture。如果任意一个任务异常,allOf的CompletableFuture,执行get方法,会抛出异常

public class allOfFutureTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<Void> a = CompletableFuture.runAsync(()->{
System.out.println("我执行完了");
});
CompletableFuture<Void> b = CompletableFuture.runAsync(() -> {
System.out.println("我也执行完了");
});
CompletableFuture<Void> allOfFuture = CompletableFuture.allOf(a, b).whenComplete((m,k)->{
System.out.println("finish");
});
}
}
//输出
我执行完了
我也执行完了
finish

AnyOf

任意一个任务执行完,就执行anyOf返回的CompletableFuture。如果执行的任务异常,anyOf的CompletableFuture,执行get方法,会抛出异常

public class AnyOfFutureTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<Void> a = CompletableFuture.runAsync(()->{
try {
Thread.sleep(3000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("我执行完了");
});
CompletableFuture<Void> b = CompletableFuture.runAsync(() -> {
System.out.println("我也执行完了");
});
CompletableFuture<Object> anyOfFuture = CompletableFuture.anyOf(a, b).whenComplete((m,k)->{
System.out.println("finish");
// return "捡田螺的小男孩";
});
anyOfFuture.join();
}
}
//输出
我也执行完了
finish

thenCompose

thenCompose方法会在某个任务执行完成后,将该任务的执行结果,作为方法入参,去执行指定的方法。该方法会返回一个新的CompletableFuture实例

  • 如果该CompletableFuture实例的result不为null,则返回一个基于该result新的CompletableFuture实例;
  • 如果该CompletableFuture实例为null,然后就执行这个新任务
public class ThenComposeTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {

CompletableFuture<String> f = CompletableFuture.completedFuture("第一个任务");
//第二个异步任务
ExecutorService executor = Executors.newSingleThreadExecutor();
CompletableFuture<String> future = CompletableFuture
.supplyAsync(() -> "第二个任务", executor)
.thenComposeAsync(data -> {
System.out.println(data); return f; //使用第一个任务作为返回
}, executor);
System.out.println(future.join());
executor.shutdown();

}
}
//输出
第二个任务
第一个任务

CompletableFuture使用有哪些注意点

CompletableFuture 使我们的异步编程更加便利的、代码更加优雅的同时,我们也要关注下它,使用的一些注意点。

异步编程利器:CompletableFuture详解_回调方法_08

1. Future需要获取返回值,才能获取异常信息

ExecutorService executorService = new ThreadPoolExecutor(5, 10, 5L,
TimeUnit.SECONDS, new ArrayBlockingQueue<>(10));
CompletableFuture<Void> future = CompletableFuture.supplyAsync(() -> {
int a = 0;
int b = 666;
int c = b / a;
return true;
},executorService).thenAccept(System.out::println);

//如果不加 get()方法这一行,看不到异常信息
//future.get();

Future需要获取返回值,才能获取到异常信息。如果不加 get()/join()方法,看不到异常信息。小伙伴们使用的时候,注意一下哈,考虑是否加try...catch...或者使用exceptionally方法。

2. CompletableFuture的get()方法是阻塞的。

CompletableFuture的get()方法是阻塞的,如果使用它来获取异步调用的返回值,需要添加超时时间~

//反例
CompletableFuture.get();
//正例
CompletableFuture.get(5, TimeUnit.SECONDS);

3. 默认线程池的注意点

CompletableFuture代码中又使用了默认的线程池,处理的线程个数是电脑CPU核数-1。在大量请求过来的时候,处理逻辑复杂的话,响应会很慢。一般建议使用自定义线程池,优化线程池配置参数。

4. 自定义线程池时,注意饱和策略

CompletableFuture的get()方法是阻塞的,我们一般建议使用​​future.get(3, TimeUnit.SECONDS)​​。并且一般建议使用自定义线程池。

但是如果线程池拒绝策略是​​DiscardPolicy​​​或者​​DiscardOldestPolicy​​,当线程池饱和时,会直接丢弃任务,不会抛弃异常。因此建议,CompletableFuture线程池策略最好使用AbortPolicy,然后耗时的异步线程,做好线程池隔离哈。


参考资料


编程老司机带你玩转 CompletableFuture 异步编程: ​https://zhuanlan.zhihu.com/p/111841508​



标签:异步,System,任务,详解,CompletableFuture,println,public,out
From: https://blog.51cto.com/u_15659694/5755285

相关文章

  • C语言操作符大全和详解(上)
    ......
  • Flink的异步算子的原理及使用
    1、简介Flink的特点是高吞吐低延迟。但是Flink中的某环节的数据处理逻辑需要和外部系统交互,调用耗时不可控会显著降低集群性能。这时候就可能需要使用异步算子让耗时操作......
  • ASP中利用OWC控件实现图表功能详解
    在ASP中利用OWC(Office Web Components)控件可轻松实现各种图表功能,如饼图,簇状柱型图,折线图等。在下面的代码中我详细的给出了饼图,簇状柱型图,折线图的使用方法。OWC的更多......
  • 【算法】时间频度与时间复杂度、归并排序、StringBuffer和StringBuilder详解!
    算法中的时间频度与时间复杂度时间频度一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度......
  • Java虚拟机详解(八)------虚拟机监控和分析工具(2)——可视化
    上篇博客我们介绍了​​虚拟机监控和分析命令行工具​​,由于其不够直观,不是很容易排查问题,那么本篇博客我们就来介绍几个可视化工具。1、JConsoleJConsole(JavaMoni......
  • Java基础(四)| 数组及内存分配详解
    ⭐本专栏旨在对JAVA的基础语法及知识点进行全面且详细的讲解,完成从0到1的java学习,面向零基础及入门的学习者,通过专栏的学习可以熟练掌握JAVA编程,同时为后续的框架学习,进阶开......
  • Go:基于 Redis 实现的延迟队列详解
    大家好,本文来自Go爱好者投稿,作者:finley背景我们在工作中经常遇到等待一段时间后再执行某些任务的需求,比如:若订单创建15分钟后仍未支付,需要关闭订单并释放库存。用......
  • 数组的find/findIndex详解
    ​​find()​​ 返回数组中满足提供的测试函数的第一个元素的值。否则返回undefined。​​find​​​方法对数组中的每一项元素执行一次​​callback​​​ 函数,直至有一......
  • Event Loop详解
    EventLoop先举一个列子console.log('start');setTimeout(()=>{console.log('timeout');});Promise.resolve().then(()=>{console.log('resolve');});console.log('......
  • arguments详解,类数组转数组方法
    为什么需要arguments对象由于​​JavaScript​​​允许函数有不定数目的参数,所以需要一种机制,可以在函数体内部读取所有参数。这就是​​arguments​​对象的由来。通......