算法简介
1.什么是算法
算法就是解决问题的有效方法 不是所有的算法都很高效也有不合格的算法
2.算法的应用场景
推荐算法(抖音视频推送 淘宝商品推送)
成像算法(AI相关)....
几乎涵盖了我们日常生活中的方方面面
3.算法工程师要求
待遇好,要求高
二分法
1.什么是二分法
是算法中最简单的算法 甚至称不上是算法
"""
二分法使用要求
待查找的数据集必须有序
二分法的缺陷
针对开头结尾的数据 查找效率低
常见的算法原理以及伪代码
二分法、冒泡、快拍、插入、堆排、桶排、数据结构(链表 约瑟夫问题 如何链表是否成环)
"""
l1=[12,34,45,62,73,84,99,123,321,415,543,654,754,867,934]
# 定义我们想要查找的数据值
# target_num = 415
def get_middle(l1,target_num):
# 添加一个结束条件
if len(l1) == 0:
print('很抱歉 没找到')
return
# 1.获取列表中间索引值
middle_index = len(l1)//2
# 2.比较目标数据值与中间索引值的大小
if target_num > l1[middle_index]:
# 3.切片保留列表右边一半
right_l1 = l1[middle_index + 1:]
print(right_l1)
# 4.针对右边一半的列表继续二分并判断 >>>: 感觉要用递归函数
return get_middle(right_l1,target_num)
elif target_num < l1[middle_index]:
# 5.切片保留列表左边一半
left_l1 = l1[:middle_index]
print(left_l1)
# 6.针对左边一半的列表继续二分并判断 >>>: 感觉要用递归函数
return get_middle(left_l1,target_num)
else:
print(l1[middle_index])
#get_middle(l1,99)
#get_middle(l1,415)
三元表达式
# 简化步骤1:代码简单并且只有一行 那么可以直接在冒号后边编写
name = 'moon'
# if name == 'moon':print('老师')
# else:print('学生')
# 三元表达式
res = '老师' if name == 'jason' else '学生'
print(res)
"""
数据值1 if 条件 else 数据值2
条件成立则使用数据值1 条件不成立则使用数据值2
当结果是二选一的情况下 使用三元表达式较为简便
并且不推荐多个三元表达式嵌套
"""
各种生成式/表达式/推导式
name_list = ['jason','kevin','tony','jerry']
#给列表中所有人名后面加上_NB的后缀
#for循环
new_list = []
for name in name_list:
data = f'{name}_NB'
new_list.append(data)
print(new_list)
列表生成式
name_list = ['jason','kevin','tony','jerry']
#先看for循环 每次for循环之后再看for关键字前面的操作
new_list = [name + "_NB" for name in name_list]
print(new_list)
# ['jason_NB', 'kevin_NB', 'tony_NB', 'jerry_NB']
#复杂情况
new_list = [name + "_NB" for name in name_list if name =='jason']
print(new_list)
# ['jason_NB']
new_list = ['大佬' if name == 'jason' else '小赤佬'
for name in name_list if name != 'jack']
print(new_list)
# ['大佬', '小赤佬', '小赤佬', '小赤佬']
字典生成式
s1 = 'hello'
for i,j in enumerate(s1,start=0):
print(i,j)
#0 h
#1 e
#2 l
#3 l
#4 o
d1 = {i: j for i, j in enumerate('hello')}
print(d1)
# {0: 'h', 1: 'e', 2: 'l', 3: 'l', 4: 'o'}
集合生成式
res = {i for i in 'hello'}
print(res)
# {'h', 'o', 'e', 'l'}
元组生成式>>>:没有元组生成式 下列的结果是生成器(后面会讲)
res = (i+'SB' for i in 'hello')
print(res)
for i in res:
print(i)
# hSB
# eSB
# lSB
# lSB
# oSB
匿名函数
没有名字的函数 需要使用关键字lambda
语法结构
lambda 形参:返回值
使用场景
lambda a,b:a+b
匿名函数一般不单独使用 需要配合其他函数一起用
常见内置函数
1.map() 映射
l1 = [1, 2, 3, 4, 5]
# def func(a):
# return a + 1
res = map(lambda x:x+1, l1)
print(list(res))
2.max()\min() 比较求最大值\最小值
l1 = [11, 22, 33, 44]
res = max(l1)
d1 = {
'zj': 100,
'jason': 8888,
'berk': 99999999,
'oscar': 1
}
def func(a):
return d1.get(a)
# res = max(d1, key=lambda k: d1.get(k))
res = max(d1, key=func)
print(res)
3.reduce
# reduce 传多个值 返回一个值
from functools import reduce
l1 = [11, 22, 33, 44, 55, 66, 77, 88]
res = reduce(lambda a, b: a * b, l1)
print(res)
标签:name,res,list,算法,middle,匿名,l1,print,表达式
From: https://www.cnblogs.com/super-xz/p/16789604.html