首页 > 编程语言 >C++初阶:1_C++入门

C++初阶:1_C++入门

时间:2024-03-13 17:05:12浏览次数:17  
标签:初阶 入门 int auto C++ 编译器 引用 函数

C++入门

零.本节知识点安排目的

C++是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式等。熟悉C语言之后,对C++学习有一定的帮助,本章节主要目标:

  1. 补充C语言语法的不足,以及C++是如何对C语言设计不合理的地方进行优化的,比如:作用域方面、IO方面、函数方面、指针方面、宏方面等。

  2. 为后续类和对象学习打基础。

一. C++关键字(C++98)

image-20240303221907940

二.命名空间

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。

#include <stdio.h>
#include <stdlib.h>
int rand = 10;

// 命名冲突
// 程序员   和   库
// 程序员   和   程序员

// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{
 printf("%d\n", rand);
return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”

1. 命名空间定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然**后接一对{}**即可,{}中即为命名空间的成员。

// bit是命名空间的名字,一般开发中是用项目名字做命名空间名。
// 我们上课用的是bit,大家下去以后自己练习用自己名字缩写即可,如张三:zs
// 1. 正常的命名空间定义
namespace bit
{
 // 命名空间中可以定义变量/函数/类型
 int rand = 10;
 int Add(int left, int right)
 {
 return left + right;
 }
  struct Node
 {
 struct Node* next;
 int val;
 };
}
//2. 命名空间可以嵌套
// test.cpp
namespace N1
{
int a;
int b;
int Add(int left, int right)
 {
     return left + right;
 }
namespace N2
 {
     int c;
     int d;
     int Sub(int left, int right)
     {
         return left - right;
     }
 }
}
//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
// ps:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{
int Mul(int left, int right)
 {
     return left * right;
 }
}
  • 注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

5c3ce7a1fc761024ad180473b39e6d7

2. 命名空间使用

命名空间中成员该如何使用呢?比如:

namespace bit
{
 // 命名空间中可以定义变量/函数/类型
 int a = 0;
 int b = 1;
 int Add(int left, int right)
 {
 return left + right;
 }
 struct Node
 {
 struct Node* next;
 int val;
 };
}
int main()
{
 // 编译报错:error C2065: “a”: 未声明的标识符
 printf("%d\n", a);
return 0;
}

命名空间的使用有三种方式:

  • (1).加命名空间名称及作用域限定符
int main()
{
    printf("%d\n", N::a);
    return 0;    
}
// 结构体引用方法 struct bit1::Node phead;

  • (2).使用using将命名空间中某个成员引入

using N::b;
int main()
{
    printf("%d\n", N::a);
    printf("%d\n", b);
    return 0;    
}
  • (3).使用using namespace命名空间名称 引入
using namespce N;// 展开命名空间
int main()
{
    printf("%d\n", N::a);
    printf("%d\n", b);
    Add(10, 20);
    return 0;    
}
  • 编译器搜索原则

  • 不指定域:1、当前局部域 2、全局域

  • 指定域 :3、如果指定了,直接去指定域搜索

  • 展开命名空间后展开的命名空间也会被搜索

3. C++输入&输出

  • 输出
// 法一
#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}

// 法二
// std的所有C++库命名空间
#include<iostream>
int main()
{
	std::cout << "hello world" << std::endl;
	return 0;
}
  • 补充

8fc01471ef8127a49bd81379ad57a6f

b9810d6cb6ddf9ac70f37ed29200d23

  • 说明
  1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
  2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出他们都包含在包含头文件中。
  3. <<是流插入运算符,>>是流提取运算符。
  4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型。
  5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识,这些知识我们我们后续才会学习,所以我们这里只是简单学习他们的使用。后面我们还有有一个章节更深入的学习IO流用法及原理。

注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间,规定C++头文件不带.h;旧编译器(vc 6.0)中还支持<iostream.h>格式,后续编译器已不支持,因此推荐使用**+std**的方式。

// ps:关于cout和cin还有很多更复杂的用法,比如控制浮点数输出精度,控制整形输出进制格式等等。因为C++兼容C语言的用法,这些又用得不是很多,我们这里就不展开学习了。后续如果有需要,我们再配合文档学习。
  • std命名空间的使用惯例:

    std是C++标准库的命名空间,如何展开std使用更合理呢?

      1. 在日常练习中,建议直接using namespace std即可,这样就很方便。
      1. using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库重名的类型/对象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大,就很容易出现。所以建议在项目开发中使用,像std::cout这样使用时指定命名空间 + using std::cout展开常用的库对象/类型等方式。

4. 缺省参数(又称默认参数)

(1).缺省参数概念

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。

void Func(int a = 0)
{
 cout<<a<<endl;
}
int main()
{
 Func();     // 没有传参时,使用参数的默认值
 Func(10);   // 传参时,使用指定的实参
return 0;
}
(2).缺省参数分类
①全缺省参数
void Func(int a = 10, int b = 20, int c = 30)
 {
     cout<<"a = "<<a<<endl;
     cout<<"b = "<<b<<endl;
     cout<<"c = "<<c<<endl;
 }
// 注:不能跳跃着传 如:Func(,1,2);此用法错误
②半缺省参数
void Func(int a, int b = 10, int c = 20)
 {
     cout<<"a = "<<a<<endl;
     cout<<"b = "<<b<<endl;
     cout<<"c = "<<c<<endl;
 }
  • 注意
  1. 半缺省参数必须从右往左依次来给出,不能间隔着给(全/半缺省传值都是从左向右传)

    如:以下两种写法都是错误的

    0f62715fdabb6ad1c63468be0fda161

  2. 缺省参数不能在函数声明和定义中同时出现**(缺省值只在声明给)**

  //a.h
  void Func(int a = 10);
  
  // a.cpp
  void Func(int a = 20)
 {}
  
  // 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。
  1. 缺省值必须是常量或者全局变量
  2. C语言不支持(编译器不支持)

5. 函数重载

4e2a0d15664566da1648fe8d800f940

2dd99e7eebb2380184ff7c19d50e3cf

(1).函数重载概念

**函数重载:**是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。

#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{
 cout << "int Add(int left, int right)" << endl;
 return left + right;
}
double Add(double left, double right)
{
 cout << "double Add(double left, double right)" << endl;
 return left + right;
}
// 2、参数个数不同
void f()
{
 cout << "f()" << endl;
}
void f(int a)
{
 cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{
 cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
 cout << "f(char b, int a)" << endl;
}
int main()
{
 Add(10, 20);
 Add(10.1, 20.2);
 f();
 f(10);
 f(10, 'a');
 f('a', 10);
 return 0;
}
(2). C++支持函数重载的原理–名字修饰(name Mangling)

为什么C++支持函数重载,而C语言不支持函数重载呢?
在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理、编译、汇编、链接。

  • 如:

    85425167f23024cb44fa49c1ec06099

  1. 实际项目通常是由多个头文件和多个源文件构成,而通过C语言阶段学习的编译链接,我们可以知道,【当前a.cpp中调用了b.cpp中定义的Add函数时】,编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中。那么怎么办呢?
  2. 所以链接阶段就是专门处理这种问题,链接器看到a.o调用Add,但是没有Add的地址,就会到b.o的符号表中找Add的地址,然后链接到一起。
  3. 那么链接时,面对Add函数,链接接器会使用哪个名字去找呢?这里每个编译器都有自己的函数名修饰规则。
  4. 由于Windows下vs的修饰规则过于复杂,而Linux下g++的修饰规则简单易懂,下面我们使用了g++演示了这个修饰后的名字。
  5. 通过下面我们可以看出gcc的函数修饰后名字不变。而g++的函数修饰后变成【_Z+函数长度+函数名+类型首字母】。
  • 采用C语言编译器编译后结果

image-20240311225043370

结论:在linux下,采用gcc编译完成后,函数名字的修饰没有发生改变。

  • 采用C++编译器编译后结果

image-20240311225149637

结论:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息添加到修改后的名字中。

  • Windows下名字修饰规则

image-20240311225402937

对比Linux会发现,windows下vs编译器对函数名字修饰规则相对复杂难懂,但道理都是类似的,我们就不做细致的研究了。

  1. 通过这里就理解了C语言没办法支持重载,因为同名函数没办法区分。而C++是通过函数修饰规则来区分,只要参数不同,修饰出来的名字就不一样,就支持了重载。
  2. **如果两个函数函数名和参数是一样的,返回值不同是不构成重载的,**因为调用时编译器没办法区分。

6. 引用

(1).引用概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。

比如:李逵,在家称为"铁牛",江湖上人称"黑旋风"。

类型& 引用变量名(对象名) = 引用实体;(可以给别名取别名)

void TestRef()
{
    int a = 10;
    int& ra = a;//<====定义引用类型
    printf("%p\n", &a);
    printf("%p\n", &ra);
}

注意:引用类型必须和引用实体同种类型

(2).引用特性
  1. 引用在定义时必须初始化
  2. 一个变量可以有多个引用
  3. 引用一旦引用一个实体,再不能引用其他实体
int main()
{
    int a =0;
	// 1、引用必须初始化
    int& b; // 该条语句编译时会出错
    b=c;//错误
    
	// 2、引用定义后,不能改变指向
    int& b= a;
    int c=2;
    b=c;// 不是改变指向,而是赋值
    
	// 3、一个变量可以有多个引用,多个别名
    int& d= b;
	return 0;
}
(3).常引用
void TestConstRef()
{
    const int a = 10;
    //int& ra = a;   // 该语句编译时会出错,a为常量
    const int& ra = a;
    // int& b = 10; // 该语句编译时会出错,b为常量
    const int& b = 10;
    double d = 12.34;
    //int& rd = d; // 该语句编译时会出错,类型不同
    const int& rd = d;
}
(4). 使用场景
①. 做参数(a、输出型参数 b、对象比较大,减少拷贝,提高效率)

这些效果,指针也可以,但是引用更方便

f2a6b00121a1bfb0be8f8b9175e3e99

⑤做返回值(a、修改返回对象 b、减少拷贝提高效率)

错误示范:

int& Add(int a, int b)
{
    int c = a + b;
    return c;
}
int main()
{
    int& ret = Add(1, 2);
    Add(3, 4);
    cout << "Add(1, 2) is :"<< ret <<endl;
    return 0;
}

image-20240312115854274

  • 注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。

  • 返回变量出了函数作用域就生命周期到了要销毁(局部变量),不能用引用返回.

  • 全局变量/静态变量/堆上变量等就可以用引用返回

(5)传值、传引用效率比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

#include <time.h>
struct A{ int a[10000]; };
void TestFunc1(A a){}

void TestFunc2(A& a){}

void TestRefAndValue()
{
 	A a;
 	// 以值作为函数参数
 	size_t begin1 = clock();
 		for (size_t i = 0; i < 10000; ++i)
 	TestFunc1(a);
 	size_t end1 = clock();
    
     // 以引用作为函数参数
     size_t begin2 = clock();
     for (size_t i = 0; i < 10000; ++i)
         TestFunc2(a);
     size_t end2 = clock();
    
    // 分别计算两个函数运行结束后的时间
     cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
     cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
  • 值和引用的作为返回值类型的性能比较
#include <time.h>
struct A{ int a[10000]; };

A a;
// 值返回
A TestFunc1() { return a;}
// 引用返回
A& TestFunc2(){ return a;}

void TestReturnByRefOrValue()
{
     // 以值作为函数的返回值类型
     size_t begin1 = clock();
     for (size_t i = 0; i < 100000; ++i)
     	TestFunc1();
     size_t end1 = clock();
     // 以引用作为函数的返回值类型
     size_t begin2 = clock();
     for (size_t i = 0; i < 100000; ++i)
     	TestFunc2();
     size_t end2 = clock();
    
     // 计算两个函数运算完成之后的时间
     cout << "TestFunc1 time:" << end1 - begin1 << endl;
     cout << "TestFunc2 time:" << end2 - begin2 << endl;
}

通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大

(6).引用和指针的区别

语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
    int a = 10;
    int& ra = a;
    cout<<"&a = "<<&a<<endl;
    cout<<"&ra = "<<&ra<<endl;
    return 0;
}

底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

int main()
{
    int a = 10;
    int& ra = a;
    ra = 20;
    int* pa = &a;
    *pa = 20;
    return 0;
}

我们来看下引用和指针的汇编代码对比:

image-20240312124402320

引用和指针的不同点:

  1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
  2. 引用在定义时必须初始化,指针没有要求
  3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何
    一个同类型实体
  4. 没有NULL引用,但有NULL指针
  5. 在sizeof中含义不同引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32
    位平台下占4个字节)
  6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
  7. 有多级指针,但是没有多级引用
  8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
  9. 引用比指针使用起来相对更安全

7. 内联函数

(1).概念

inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。(把里面的运算逻辑以灵活的方式实现到外面不建立栈帧)

image-20240312144509096

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。
查看方式:

  1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
  2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2013的设置方式)

image-20240312144650121

image-20240312144714535

(2). 特性
  1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
  2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:

image-20240312144819363

  1. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。
// F.h
#include <iostream>
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
 cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
 f(10);
 return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl 
f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用
  • 【面试题】
    宏的优缺点?
    优点:
    1.增强代码的复用性。
    2.提高性能。
    缺点:
    1.不方便调试宏。(因为预编译阶段进行了替换)
    2.导致代码可读性差,可维护性差,容易误用。
    3.没有类型安全的检查 。

    C++有哪些技术替代宏?

    1. 常量定义 换用const enum
    2. 短小函数定义 换用内联函数

8. auto关键字(C++11)

(1).类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

  1. 类型难于拼写
  2. 含义不明确导致容易出错
#include <string>
#include <map>
int main()
{
 std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange", 
"橙子" }, 
   {"pear","梨"} };
 std::map<std::string, std::string>::iterator it = m.begin();
 while (it != m.end())
 {
 //....
 }
 return 0;
}

std::map<std::string, std::string>::iterator 是一个类型,但是该类型太长了,特别容易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:

#include <string>
#include <map>
typedef std::map<std::string, std::string> Map;
int main()
{
 Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} };
 Map::iterator it = m.begin();
 while (it != m.end())
 {
 //....
 }
 return 0;
}

使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:

typedef char* pstring;
int main()
{
 const pstring p1;    // 编译成功还是失败?
 const pstring* p2;   // 编译成功还是失败?
 return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。

  • auto使用实例

    68a5562f21924db900a95551e70688a

(2). auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}

【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

(3).auto的使用细则
  1. auto与指针和引用结合起来使用
    用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
int main()
{
    int x = 10;
    auto a = &x;
    auto* b = &x;
    auto& c = x;
    cout << typeid(a).name() << endl;
    cout << typeid(b).name() << endl;
    cout << typeid(c).name() << endl;
    *a = 20;
    *b = 30;
     c = 40;
    return 0;
}
  1. 在同一行定义多个变量
    当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
void TestAuto()
{
    auto a = 1, b = 2; 
    auto c = 3, d = 4.0;  // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}
(4).auto不能推导的场景
  1. auto不能作为函数的参数(新的标准auto可以做返回值)

    // 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
    void TestAuto(auto a)
    {}
    
  2. auto不能直接用来声明数组

void TestAuto()
{
    int a[] = {1,2,3};
    auto b[] = {4,5,6};
}
  1. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
  2. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。

9. 基于范围的for循环(C++11)

(1).范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
     array[i] *= 2;
for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
     cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。

void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)
     e *= 2;
for(auto e : array)
     cout << e << " ";
return 0;
}

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

(4).范围for的使用条件
  1. for循环迭代的范围必须是确定的
    对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。
    注意:以下代码就有问题,因为for的范围不确定
void TestFor(int array[])
{
    for(auto& e : array)
        cout<< e <<endl;
}
  1. 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)

10. 指针空值nullptr(C++11)

(1).C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:

void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

可以看到,*NULL可能被定义为字面常量0,或者被定义为无类型指针(void)的常量。**不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)
{
 cout<<"f(int)"<<endl;
}
void f(int*)
{
 cout<<"f(int*)"<<endl;
}
int main()
{
 f(0);
 f(NULL);
 f((int*)NULL);
 return 0;
}

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。

在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

注意:

  1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。

  2. 在C++11中,sizeof(nullptr) 与 sizeof((void)0)所占的字节数相同。*

  3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

标签:初阶,入门,int,auto,C++,编译器,引用,函数
From: https://blog.csdn.net/Open__Ai/article/details/136684964

相关文章

  • PCB 从入门到未知
    首先声明:本人纯属记录自己的学习过程,如果此篇文章有一丝作用,请点赞加关注,会持续记录自己的学习过程1.新建工程的步骤(1)先建立一个PCB工程(2)给PCB添加一个Schemtic2.安装库文件(1)点击库,进入到安装界面(2)点击安装,找到自己存放库的文件夹(3)选中要安装的文件,然后点击打开即......
  • Pandas从入门到精通
    Pandas一、Pandas简介1.pandas是什么Pandas是一个开源的数据分析和数据处理库,它是基于Python编程语言的Pandas提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。Pandas是数据科学和分析领域中常用的工具之一,它使得用户能够轻......
  • 浅淡 C++ 与 C++ 入门
            我们知道,C语言是结构化和模块化的语言,适用于较小规模的程序。而当解决复杂问题,需要高度抽象和建模时,C语言则不合适,而C++正是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式。        因此在这篇博客,将会介绍C++中引入哪些......
  • c++内建函数对象
    概念:c++STL中内建了一些函数对象分类:算术仿函数关系仿函数逻辑仿函数用法:这些仿函数所产生的对象,用法和一般函数完全相同使用内建函数对象,需要使用头文件#include<functional> 1.算术仿函数 功能描述:实现四则运算其中negate是一元运算,其他都是二元运算仿函数......
  • 【自动化测试入门】用Airtest - Selenium对Firefox进行自动化测试(0基础也能学会)
    1.前言本文将详细介绍如何使用AirtestIDE驱动Firefox测试,以及脱离AirtestIDE怎么驱动Firefox(VScode为例)。看完本文零基础小白也能学会Firefox浏览器自动化测试!!!2.如何使用AirtestIDE驱动Firefox浏览器对于Web自动化测试,目前AirtestIDE支持chrome浏览器和Firefox2种浏览器,今天......
  • C++ cout的使用总结
    cout是C++中ostream类型的对象cout是C++中ostream类型的对象,该类被封装在<iostream>库中,该库定义的名字都在命名空间std中,所以cout全称是std::cout。1、cout支持多种数据类型,如int、float、double、char、string等,它们都会被自动转换成字符串进行输出。#includ......
  • 【数据结构初阶 9】内排序
    文章目录......
  • ThreadLocal 快速入门
    ThreadLocal快速入门ThreadLocal是Java中的一个类,用于创建线程局部变量。线程局部变量是一种特殊的变量,每个线程都有自己的副本,互相之间不会相互影响。这在多线程环境中非常有用,可以避免线程间共享变量导致的并发问题。定义与作用:ThreadLocal是Java中的一个类,用于......
  • 十五届蓝桥青少C++组3月评测2024年3月中高级
    STEMA考试C++中高级试卷(24年3月10日)一、选择题(50分)1:(110010)2+(c3)16的结果是()。*选择题严禁使用程序验证,选择题不答或答错都不扣分A.(240)10 B.(11110101)2 C.(366)8 D.(f6)16 备注:此题目下标代表进制,因不支持md格式。 参考答案:B2:表达式1000/3的结果......
  • C++面试100问!(三)
    前言    本次专题旨在回顾C++的一些基础,方便实时总结。C++源文件从文本到可执行文件经历的过程?         预处理阶段:对源代码文件中文件包含关系(头文件)、预编译语句(宏定义)进行分析和替换,生成预编译文件。        编译阶段:将经过预处理后的预编译文......