首页 > 编程语言 >C# Onnx C2PNet 图像去雾 室外场景

C# Onnx C2PNet 图像去雾 室外场景

时间:2024-03-13 16:03:42浏览次数:28  
标签:Mat C# Onnx image sdf C2PNet result new out

目录

介绍

效果

模型信息

项目

代码

下载


C# Onnx C2PNet 图像去雾 室外场景

介绍

github地址:https://github.com/YuZheng9/C2PNet

[CVPR 2023] Curricular Contrastive Regularization for Physics-aware Single Image Dehazing

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 3, -1, -1]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;
        int inpHeight,inpWidth;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();

            //读图片
            image = new Mat(image_path);
            inpWidth = image.Width;
            inpHeight = image.Height;
            //将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(image, image_rgb, ColorConversionCodes.BGR2RGB);
            //输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth });
            for (int y = 0; y < image_rgb.Height; y++)
            {
                for (int x = 0; x < image_rgb.Width; x++)
                {
                    input_tensor[0, 0, y, x] = image_rgb.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = image_rgb.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = image_rgb.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            var result_array = result_tensors.ToArray();

            for (int i = 0; i < result_array.Length; i++)
            {
                result_array[i] = result_array[i] * 255f;

                if (result_array[i] < 0)
                {
                    result_array[i] = 0;
                }
                else if (result_array[i] > 255)
                {
                    result_array[i] = 255;
                }
            }


            int out_h = result_tensors.Dimensions[2];
            int out_w = result_tensors.Dimensions[3];

            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];

            Array.Copy(result_array, temp_r, out_h * out_w);
            Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w);

            Mat rmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_b);

            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);

            result_image.ConvertTo(result_image, MatType.CV_8UC3);

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/c2pnet_outdoor_HxW.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

下载

源码下载

标签:Mat,C#,Onnx,image,sdf,C2PNet,result,new,out
From: https://blog.csdn.net/weixin_46771779/article/details/136682922

相关文章

  • docker-compose安装minio集群
    一、docker-compose安装minio单机版直接使用docker安装单机版,可用于测试创建.env环境文件MINIO_PASSWORD=minio@123创建docker-compose.yml环境文件version:"3"services:minio:image:minio/miniocontainer_name:minioports:-9000:9000......
  • 震惊!css居然可以这么用!
       如果说html是盖房子,那么css就是装修房子,它可以决定外观、样式、和位置等网页元素。一、css的几种使用方式    1、行内样式    所有标签都自带有style属性,因此给标签加一个style=“样式1:样式1的值;样式2:样式2的值”,如果有多个样式,样式和样式之间......
  • DevOps-Jenkins-CD持续交付操作
    基于Git参数构建之前是默认拉取最新提交代码构建,实际中不适用,需要通过打标签选择发布相应版本打开Jenkins任务设置,勾选参数化构建过程>选择Git参数(这里是GitParameter插件的作用)设置标识名称(记住它,下面的构建步骤需要添加设置这个变量),描述随意,参数类型基于标签默认......
  • 文件上传例题:[GXYCTF2019]BabyUpload
    文件上传例题:[GXYCTF2019]BabyUpload打开网址明显文件上传上传简单php马尝试后缀名过滤,使用BP抓包进行修改提示文件类型不对,修改成image/jpeg提示还是php,那换成js马<scriptlanguage="php">eval($_POST['cmd']);</script>上传成功解析php代码需要.htaccess文件在文......
  • 【WCH蓝牙系列芯片】-基于CH582开发板—蓝牙主机睡眠模式,串口唤醒收发数据
    -------------------------------------------------------------------------------------------------------------------------------------  在使用蓝牙主机的时候,有时需要通过宏定义开启睡眠模式,从而达到降低芯片的功耗。蓝牙的睡眠是由协议栈自行管理的,在芯片睡眠状态......
  • 【PR】Block-NeRF: Scalable Large Scene Neural View Synthesis
    【简介】 本文的作者来自UCBerkeley,Waymo和Google研究院,一听就是大佬。发表在CVPR2022。  【创新点】  【review】  【方法】   【结论】  【参考】TancikM,CasserV,YanX,etal.Block-nerf:Scalablelargesceneneuralviewsynth......
  • 佳佳的 Fibonacci
    题面\(f_x=\begin{cases}1&x\in\{1,2\}\\f_{x-1}+f_{x-2}&x\geq3\\\end{cases}\)求\(1\timesf_1+2\timesf_2+3\timesf_3+…+n\timesf_n\)。解法正常的Fibonacci前n项和\(loj\)如果卡死了用这个:Fibonac......
  • c#字符串处理 :多空格,多逗号
    1.正规表达式:System.Text.RegularExpressions.Regex.Replace(str,"([]+)","") --  str是输入或要检测的字符串。正则表达式方法Regex.Replace()和匹配符\s(匹配任何空白字符,包括空格,制表符,换页符等,与[\f\n\t\r\v]等效)//使用正则去除空格,换行,制表符,换页符Regexregex=n......
  • Oracle创建用户,授权,取消授权常用语句整理
    --删除用户及及用户下的所有数据dropuserxxxcascade;--创建用户赋予密码createuserxxxidentifiedby1234;--赋予权限grantdbatoxxx;--删除权限revokedbafromxxx;--赋予用户登录数据库的权限grantcreatesessiontoxxx;--授予用户操作表的权限gran......
  • 76. 最小覆盖子串c
    booljudge(int*temps,int*tempt){for(inti=0;i<200;i++){if(temps[i]<tempt[i])returnfalse;}returntrue;}char*minWindow(char*s,char*t){intns=strlen(s),nt=strlen(t);\char*array1=(char*)malloc(sizeof(char)......