先创建工程:
v init .
编写demo.h
头文件:
#ifndef DEMO_H
#define DEMO_H
void decompile();
#endif
编写demo.c
:
/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <[email protected]>, 2013 */
#include <stdio.h>
#include <stdlib.h>
#include <capstone/platform.h>
#include <capstone/capstone.h>
#include "demo.h"
static csh handle;
struct platform {
cs_arch arch;
cs_mode mode;
unsigned char *code;
size_t size;
const char *comment;
cs_opt_type opt_type;
cs_opt_value opt_value;
};
static void print_string_hex(const char *comment, unsigned char *str, size_t len)
{
unsigned char *c;
printf("%s", comment);
for (c = str; c < str + len; c++) {
printf("0x%02x ", *c & 0xff);
}
printf("\n");
}
static const char *get_eflag_name(uint64_t flag)
{
switch(flag) {
default:
return NULL;
case X86_EFLAGS_UNDEFINED_OF:
return "UNDEF_OF";
case X86_EFLAGS_UNDEFINED_SF:
return "UNDEF_SF";
case X86_EFLAGS_UNDEFINED_ZF:
return "UNDEF_ZF";
case X86_EFLAGS_MODIFY_AF:
return "MOD_AF";
case X86_EFLAGS_UNDEFINED_PF:
return "UNDEF_PF";
case X86_EFLAGS_MODIFY_CF:
return "MOD_CF";
case X86_EFLAGS_MODIFY_SF:
return "MOD_SF";
case X86_EFLAGS_MODIFY_ZF:
return "MOD_ZF";
case X86_EFLAGS_UNDEFINED_AF:
return "UNDEF_AF";
case X86_EFLAGS_MODIFY_PF:
return "MOD_PF";
case X86_EFLAGS_UNDEFINED_CF:
return "UNDEF_CF";
case X86_EFLAGS_MODIFY_OF:
return "MOD_OF";
case X86_EFLAGS_RESET_OF:
return "RESET_OF";
case X86_EFLAGS_RESET_CF:
return "RESET_CF";
case X86_EFLAGS_RESET_DF:
return "RESET_DF";
case X86_EFLAGS_RESET_IF:
return "RESET_IF";
case X86_EFLAGS_TEST_OF:
return "TEST_OF";
case X86_EFLAGS_TEST_SF:
return "TEST_SF";
case X86_EFLAGS_TEST_ZF:
return "TEST_ZF";
case X86_EFLAGS_TEST_PF:
return "TEST_PF";
case X86_EFLAGS_TEST_CF:
return "TEST_CF";
case X86_EFLAGS_RESET_SF:
return "RESET_SF";
case X86_EFLAGS_RESET_AF:
return "RESET_AF";
case X86_EFLAGS_RESET_TF:
return "RESET_TF";
case X86_EFLAGS_RESET_NT:
return "RESET_NT";
case X86_EFLAGS_PRIOR_OF:
return "PRIOR_OF";
case X86_EFLAGS_PRIOR_SF:
return "PRIOR_SF";
case X86_EFLAGS_PRIOR_ZF:
return "PRIOR_ZF";
case X86_EFLAGS_PRIOR_AF:
return "PRIOR_AF";
case X86_EFLAGS_PRIOR_PF:
return "PRIOR_PF";
case X86_EFLAGS_PRIOR_CF:
return "PRIOR_CF";
case X86_EFLAGS_PRIOR_TF:
return "PRIOR_TF";
case X86_EFLAGS_PRIOR_IF:
return "PRIOR_IF";
case X86_EFLAGS_PRIOR_DF:
return "PRIOR_DF";
case X86_EFLAGS_TEST_NT:
return "TEST_NT";
case X86_EFLAGS_TEST_DF:
return "TEST_DF";
case X86_EFLAGS_RESET_PF:
return "RESET_PF";
case X86_EFLAGS_PRIOR_NT:
return "PRIOR_NT";
case X86_EFLAGS_MODIFY_TF:
return "MOD_TF";
case X86_EFLAGS_MODIFY_IF:
return "MOD_IF";
case X86_EFLAGS_MODIFY_DF:
return "MOD_DF";
case X86_EFLAGS_MODIFY_NT:
return "MOD_NT";
case X86_EFLAGS_MODIFY_RF:
return "MOD_RF";
case X86_EFLAGS_SET_CF:
return "SET_CF";
case X86_EFLAGS_SET_DF:
return "SET_DF";
case X86_EFLAGS_SET_IF:
return "SET_IF";
}
}
static const char *get_fpu_flag_name(uint64_t flag)
{
switch (flag) {
default:
return NULL;
case X86_FPU_FLAGS_MODIFY_C0:
return "MOD_C0";
case X86_FPU_FLAGS_MODIFY_C1:
return "MOD_C1";
case X86_FPU_FLAGS_MODIFY_C2:
return "MOD_C2";
case X86_FPU_FLAGS_MODIFY_C3:
return "MOD_C3";
case X86_FPU_FLAGS_RESET_C0:
return "RESET_C0";
case X86_FPU_FLAGS_RESET_C1:
return "RESET_C1";
case X86_FPU_FLAGS_RESET_C2:
return "RESET_C2";
case X86_FPU_FLAGS_RESET_C3:
return "RESET_C3";
case X86_FPU_FLAGS_SET_C0:
return "SET_C0";
case X86_FPU_FLAGS_SET_C1:
return "SET_C1";
case X86_FPU_FLAGS_SET_C2:
return "SET_C2";
case X86_FPU_FLAGS_SET_C3:
return "SET_C3";
case X86_FPU_FLAGS_UNDEFINED_C0:
return "UNDEF_C0";
case X86_FPU_FLAGS_UNDEFINED_C1:
return "UNDEF_C1";
case X86_FPU_FLAGS_UNDEFINED_C2:
return "UNDEF_C2";
case X86_FPU_FLAGS_UNDEFINED_C3:
return "UNDEF_C3";
case X86_FPU_FLAGS_TEST_C0:
return "TEST_C0";
case X86_FPU_FLAGS_TEST_C1:
return "TEST_C1";
case X86_FPU_FLAGS_TEST_C2:
return "TEST_C2";
case X86_FPU_FLAGS_TEST_C3:
return "TEST_C3";
}
}
static void print_insn_detail(csh ud, cs_mode mode, cs_insn *ins)
{
int count, i;
cs_x86 *x86;
cs_regs regs_read, regs_write;
uint8_t regs_read_count, regs_write_count;
// detail can be NULL on "data" instruction if SKIPDATA option is turned ON
if (ins->detail == NULL)
return;
x86 = &(ins->detail->x86);
print_string_hex("\tPrefix:", x86->prefix, 4);
print_string_hex("\tOpcode:", x86->opcode, 4);
printf("\trex: 0x%x\n", x86->rex);
printf("\taddr_size: %u\n", x86->addr_size);
printf("\tmodrm: 0x%x\n", x86->modrm);
if (x86->encoding.modrm_offset != 0) {
printf("\tmodrm_offset: 0x%x\n", x86->encoding.modrm_offset);
}
printf("\tdisp: 0x%" PRIx64 "\n", x86->disp);
if (x86->encoding.disp_offset != 0) {
printf("\tdisp_offset: 0x%x\n", x86->encoding.disp_offset);
}
if (x86->encoding.disp_size != 0) {
printf("\tdisp_size: 0x%x\n", x86->encoding.disp_size);
}
// SIB is not available in 16-bit mode
if ((mode & CS_MODE_16) == 0) {
printf("\tsib: 0x%x\n", x86->sib);
if (x86->sib_base != X86_REG_INVALID)
printf("\t\tsib_base: %s\n", cs_reg_name(handle, x86->sib_base));
if (x86->sib_index != X86_REG_INVALID)
printf("\t\tsib_index: %s\n", cs_reg_name(handle, x86->sib_index));
if (x86->sib_scale != 0)
printf("\t\tsib_scale: %d\n", x86->sib_scale);
}
// XOP code condition
if (x86->xop_cc != X86_XOP_CC_INVALID) {
printf("\txop_cc: %u\n", x86->xop_cc);
}
// SSE code condition
if (x86->sse_cc != X86_SSE_CC_INVALID) {
printf("\tsse_cc: %u\n", x86->sse_cc);
}
// AVX code condition
if (x86->avx_cc != X86_AVX_CC_INVALID) {
printf("\tavx_cc: %u\n", x86->avx_cc);
}
// AVX Suppress All Exception
if (x86->avx_sae) {
printf("\tavx_sae: %u\n", x86->avx_sae);
}
// AVX Rounding Mode
if (x86->avx_rm != X86_AVX_RM_INVALID) {
printf("\tavx_rm: %u\n", x86->avx_rm);
}
// Print out all immediate operands
count = cs_op_count(ud, ins, X86_OP_IMM);
if (count) {
printf("\timm_count: %u\n", count);
for (i = 1; i < count + 1; i++) {
int index = cs_op_index(ud, ins, X86_OP_IMM, i);
printf("\t\timms[%u]: 0x%" PRIx64 "\n", i, x86->operands[index].imm);
if (x86->encoding.imm_offset != 0) {
printf("\timm_offset: 0x%x\n", x86->encoding.imm_offset);
}
if (x86->encoding.imm_size != 0) {
printf("\timm_size: 0x%x\n", x86->encoding.imm_size);
}
}
}
if (x86->op_count)
printf("\top_count: %u\n", x86->op_count);
// Print out all operands
for (i = 0; i < x86->op_count; i++) {
cs_x86_op *op = &(x86->operands[i]);
switch((int)op->type) {
case X86_OP_REG:
printf("\t\toperands[%u].type: REG = %s\n", i, cs_reg_name(handle, op->reg));
break;
case X86_OP_IMM:
printf("\t\toperands[%u].type: IMM = 0x%" PRIx64 "\n", i, op->imm);
break;
case X86_OP_MEM:
printf("\t\toperands[%u].type: MEM\n", i);
if (op->mem.segment != X86_REG_INVALID)
printf("\t\t\toperands[%u].mem.segment: REG = %s\n", i, cs_reg_name(handle, op->mem.segment));
if (op->mem.base != X86_REG_INVALID)
printf("\t\t\toperands[%u].mem.base: REG = %s\n", i, cs_reg_name(handle, op->mem.base));
if (op->mem.index != X86_REG_INVALID)
printf("\t\t\toperands[%u].mem.index: REG = %s\n", i, cs_reg_name(handle, op->mem.index));
if (op->mem.scale != 1)
printf("\t\t\toperands[%u].mem.scale: %u\n", i, op->mem.scale);
if (op->mem.disp != 0)
printf("\t\t\toperands[%u].mem.disp: 0x%" PRIx64 "\n", i, op->mem.disp);
break;
default:
break;
}
// AVX broadcast type
if (op->avx_bcast != X86_AVX_BCAST_INVALID)
printf("\t\toperands[%u].avx_bcast: %u\n", i, op->avx_bcast);
// AVX zero opmask {z}
if (op->avx_zero_opmask != false)
printf("\t\toperands[%u].avx_zero_opmask: TRUE\n", i);
printf("\t\toperands[%u].size: %u\n", i, op->size);
switch(op->access) {
default:
break;
case CS_AC_READ:
printf("\t\toperands[%u].access: READ\n", i);
break;
case CS_AC_WRITE:
printf("\t\toperands[%u].access: WRITE\n", i);
break;
case CS_AC_READ | CS_AC_WRITE:
printf("\t\toperands[%u].access: READ | WRITE\n", i);
break;
}
}
// Print out all registers accessed by this instruction (either implicit or explicit)
if (!cs_regs_access(ud, ins,
regs_read, ®s_read_count,
regs_write, ®s_write_count)) {
if (regs_read_count) {
printf("\tRegisters read:");
for(i = 0; i < regs_read_count; i++) {
printf(" %s", cs_reg_name(handle, regs_read[i]));
}
printf("\n");
}
if (regs_write_count) {
printf("\tRegisters modified:");
for(i = 0; i < regs_write_count; i++) {
printf(" %s", cs_reg_name(handle, regs_write[i]));
}
printf("\n");
}
}
if (x86->eflags || x86->fpu_flags) {
for(i = 0; i < ins->detail->groups_count; i++) {
if (ins->detail->groups[i] == X86_GRP_FPU) {
printf("\tFPU_FLAGS:");
for(i = 0; i <= 63; i++)
if (x86->fpu_flags & ((uint64_t)1 << i)) {
printf(" %s", get_fpu_flag_name((uint64_t)1 << i));
}
printf("\n");
break;
}
}
if (i == ins->detail->groups_count) {
printf("\tEFLAGS:");
for(i = 0; i <= 63; i++)
if (x86->eflags & ((uint64_t)1 << i)) {
printf(" %s", get_eflag_name((uint64_t)1 << i));
}
printf("\n");
}
}
printf("\n");
}
static void decompile()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
#define X86_CODE16 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89\x67\x00\x00\xb4\xc6\x66\xe9\xb8\x00\x00\x00\x67\xff\xa0\x23\x01\x00\x00\x66\xe8\xcb\x00\x00\x00\x74\xfc"
#define X86_CODE32 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89\x67\x00\x00\xb4\xc6\xe9\xea\xbe\xad\xde\xff\xa0\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
struct platform platforms[] = {
{
CS_ARCH_X86,
CS_MODE_16,
(unsigned char *)X86_CODE16,
sizeof(X86_CODE16) - 1,
"X86 16bit (Intel syntax)"
},
{
CS_ARCH_X86,
CS_MODE_32,
(unsigned char *)X86_CODE32,
sizeof(X86_CODE32) - 1,
"X86 32 (AT&T syntax)",
CS_OPT_SYNTAX,
CS_OPT_SYNTAX_ATT,
},
{
CS_ARCH_X86,
CS_MODE_32,
(unsigned char *)X86_CODE32,
sizeof(X86_CODE32) - 1,
"X86 32 (Intel syntax)"
},
{
CS_ARCH_X86,
CS_MODE_64,
(unsigned char *)X86_CODE64,
sizeof(X86_CODE64) - 1,
"X86 64 (Intel syntax)"
},
};
uint64_t address = 0x1000;
cs_insn *insn;
int i;
size_t count;
for (i = 0; i < sizeof(platforms)/sizeof(platforms[0]); i++) {
cs_err err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
if (err) {
printf("Failed on cs_open() with error returned: %u\n", err);
abort();
}
if (platforms[i].opt_type)
cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);
cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);
count = cs_disasm(handle, platforms[i].code, platforms[i].size, address, 0, &insn);
if (count) {
size_t j;
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
print_string_hex("Code:", platforms[i].code, platforms[i].size);
printf("Disasm:\n");
for (j = 0; j < count; j++) {
printf("0x%" PRIx64 ":\t%s\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);
print_insn_detail(handle, platforms[i].mode, &insn[j]);
}
printf("0x%" PRIx64 ":\n", insn[j-1].address + insn[j-1].size);
// free memory allocated by cs_disasm()
cs_free(insn, count);
} else {
printf("****************\n");
printf("Platform: %s\n", platforms[i].comment);
print_string_hex("Code:", platforms[i].code, platforms[i].size);
printf("ERROR: Failed to disasm given code!\n");
abort();
}
printf("\n");
cs_close(&handle);
}
}
再编写v语言main.v
:
#flag -I @VMODROOT/
// #flag -I /home/znw/src/capstone/include/
// #flag -L /home/znw/src/capstone/
#flag -l capstone
#flag @VMODROOT/demo.o
#include "demo.h"
fn C.decompile()
pub fn main() {
C.decompile()
}
编译:
v .
或
v -cc gcc .
或
v -cc clang .
编译与运行均正常。但存在的问题:指定的头文件路径和链接库默认情况下都不起作用,gcc和clang可以编译,运行时程序崩溃。发现最终程序变得比较大,估计是将4.0.2和5.0.3的库混合了,暂时存疑。
标签:case,调用,return,X86,printf,EFLAGS,反汇编,capstone,x86 From: https://www.cnblogs.com/soarowl/p/17983334