首页 > 编程语言 >V语言调用capstone进行反汇编

V语言调用capstone进行反汇编

时间:2024-01-23 20:24:42浏览次数:18  
标签:case 调用 return X86 printf EFLAGS 反汇编 capstone x86

先创建工程:

v init .

编写demo.h头文件:

#ifndef DEMO_H
#define DEMO_H

void decompile();

#endif

编写demo.c:

/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <[email protected]>, 2013 */

#include <stdio.h>
#include <stdlib.h>

#include <capstone/platform.h>
#include <capstone/capstone.h>

#include "demo.h"

static csh handle;

struct platform {
	cs_arch arch;
	cs_mode mode;
	unsigned char *code;
	size_t size;
	const char *comment;
	cs_opt_type opt_type;
	cs_opt_value opt_value;
};

static void print_string_hex(const char *comment, unsigned char *str, size_t len)
{
	unsigned char *c;

	printf("%s", comment);
	for (c = str; c < str + len; c++) {
		printf("0x%02x ", *c & 0xff);
	}

	printf("\n");
}

static const char *get_eflag_name(uint64_t flag)
{
	switch(flag) {
		default:
			return NULL;
		case X86_EFLAGS_UNDEFINED_OF:
			return "UNDEF_OF";
		case X86_EFLAGS_UNDEFINED_SF:
			return "UNDEF_SF";
		case X86_EFLAGS_UNDEFINED_ZF:
			return "UNDEF_ZF";
		case X86_EFLAGS_MODIFY_AF:
			return "MOD_AF";
		case X86_EFLAGS_UNDEFINED_PF:
			return "UNDEF_PF";
		case X86_EFLAGS_MODIFY_CF:
			return "MOD_CF";
		case X86_EFLAGS_MODIFY_SF:
			return "MOD_SF";
		case X86_EFLAGS_MODIFY_ZF:
			return "MOD_ZF";
		case X86_EFLAGS_UNDEFINED_AF:
			return "UNDEF_AF";
		case X86_EFLAGS_MODIFY_PF:
			return "MOD_PF";
		case X86_EFLAGS_UNDEFINED_CF:
			return "UNDEF_CF";
		case X86_EFLAGS_MODIFY_OF:
			return "MOD_OF";
		case X86_EFLAGS_RESET_OF:
			return "RESET_OF";
		case X86_EFLAGS_RESET_CF:
			return "RESET_CF";
		case X86_EFLAGS_RESET_DF:
			return "RESET_DF";
		case X86_EFLAGS_RESET_IF:
			return "RESET_IF";
		case X86_EFLAGS_TEST_OF:
			return "TEST_OF";
		case X86_EFLAGS_TEST_SF:
			return "TEST_SF";
		case X86_EFLAGS_TEST_ZF:
			return "TEST_ZF";
		case X86_EFLAGS_TEST_PF:
			return "TEST_PF";
		case X86_EFLAGS_TEST_CF:
			return "TEST_CF";
		case X86_EFLAGS_RESET_SF:
			return "RESET_SF";
		case X86_EFLAGS_RESET_AF:
			return "RESET_AF";
		case X86_EFLAGS_RESET_TF:
			return "RESET_TF";
		case X86_EFLAGS_RESET_NT:
			return "RESET_NT";
		case X86_EFLAGS_PRIOR_OF:
			return "PRIOR_OF";
		case X86_EFLAGS_PRIOR_SF:
			return "PRIOR_SF";
		case X86_EFLAGS_PRIOR_ZF:
			return "PRIOR_ZF";
		case X86_EFLAGS_PRIOR_AF:
			return "PRIOR_AF";
		case X86_EFLAGS_PRIOR_PF:
			return "PRIOR_PF";
		case X86_EFLAGS_PRIOR_CF:
			return "PRIOR_CF";
		case X86_EFLAGS_PRIOR_TF:
			return "PRIOR_TF";
		case X86_EFLAGS_PRIOR_IF:
			return "PRIOR_IF";
		case X86_EFLAGS_PRIOR_DF:
			return "PRIOR_DF";
		case X86_EFLAGS_TEST_NT:
			return "TEST_NT";
		case X86_EFLAGS_TEST_DF:
			return "TEST_DF";
		case X86_EFLAGS_RESET_PF:
			return "RESET_PF";
		case X86_EFLAGS_PRIOR_NT:
			return "PRIOR_NT";
		case X86_EFLAGS_MODIFY_TF:
			return "MOD_TF";
		case X86_EFLAGS_MODIFY_IF:
			return "MOD_IF";
		case X86_EFLAGS_MODIFY_DF:
			return "MOD_DF";
		case X86_EFLAGS_MODIFY_NT:
			return "MOD_NT";
		case X86_EFLAGS_MODIFY_RF:
			return "MOD_RF";
		case X86_EFLAGS_SET_CF:
			return "SET_CF";
		case X86_EFLAGS_SET_DF:
			return "SET_DF";
		case X86_EFLAGS_SET_IF:
			return "SET_IF";
	}
}

static const char *get_fpu_flag_name(uint64_t flag)
{
	switch (flag) {
		default:
			return NULL;
		case X86_FPU_FLAGS_MODIFY_C0:
			return "MOD_C0";
		case X86_FPU_FLAGS_MODIFY_C1:
			return "MOD_C1";
		case X86_FPU_FLAGS_MODIFY_C2:
			return "MOD_C2";
		case X86_FPU_FLAGS_MODIFY_C3:
			return "MOD_C3";
		case X86_FPU_FLAGS_RESET_C0:
			return "RESET_C0";
		case X86_FPU_FLAGS_RESET_C1:
			return "RESET_C1";
		case X86_FPU_FLAGS_RESET_C2:
			return "RESET_C2";
		case X86_FPU_FLAGS_RESET_C3:
			return "RESET_C3";
		case X86_FPU_FLAGS_SET_C0:
			return "SET_C0";
		case X86_FPU_FLAGS_SET_C1:
			return "SET_C1";
		case X86_FPU_FLAGS_SET_C2:
			return "SET_C2";
		case X86_FPU_FLAGS_SET_C3:
			return "SET_C3";
		case X86_FPU_FLAGS_UNDEFINED_C0:
			return "UNDEF_C0";
		case X86_FPU_FLAGS_UNDEFINED_C1:
			return "UNDEF_C1";
		case X86_FPU_FLAGS_UNDEFINED_C2:
			return "UNDEF_C2";
		case X86_FPU_FLAGS_UNDEFINED_C3:
			return "UNDEF_C3";
		case X86_FPU_FLAGS_TEST_C0:
			return "TEST_C0";
		case X86_FPU_FLAGS_TEST_C1:
			return "TEST_C1";
		case X86_FPU_FLAGS_TEST_C2:
			return "TEST_C2";
		case X86_FPU_FLAGS_TEST_C3:
			return "TEST_C3";
	}
}

static void print_insn_detail(csh ud, cs_mode mode, cs_insn *ins)
{
	int count, i;
	cs_x86 *x86;
	cs_regs regs_read, regs_write;
	uint8_t regs_read_count, regs_write_count;

	// detail can be NULL on "data" instruction if SKIPDATA option is turned ON
	if (ins->detail == NULL)
		return;

	x86 = &(ins->detail->x86);

	print_string_hex("\tPrefix:", x86->prefix, 4);

	print_string_hex("\tOpcode:", x86->opcode, 4);

	printf("\trex: 0x%x\n", x86->rex);

	printf("\taddr_size: %u\n", x86->addr_size);
	printf("\tmodrm: 0x%x\n", x86->modrm);
	if (x86->encoding.modrm_offset != 0) {
		printf("\tmodrm_offset: 0x%x\n", x86->encoding.modrm_offset);
	}
	
	printf("\tdisp: 0x%" PRIx64 "\n", x86->disp);
	if (x86->encoding.disp_offset != 0) {
		printf("\tdisp_offset: 0x%x\n", x86->encoding.disp_offset);
	}
	
	if (x86->encoding.disp_size != 0) {
		printf("\tdisp_size: 0x%x\n", x86->encoding.disp_size);
	}
	
	// SIB is not available in 16-bit mode
	if ((mode & CS_MODE_16) == 0) {
		printf("\tsib: 0x%x\n", x86->sib);
		if (x86->sib_base != X86_REG_INVALID)
			printf("\t\tsib_base: %s\n", cs_reg_name(handle, x86->sib_base));
		if (x86->sib_index != X86_REG_INVALID)
			printf("\t\tsib_index: %s\n", cs_reg_name(handle, x86->sib_index));
		if (x86->sib_scale != 0)
			printf("\t\tsib_scale: %d\n", x86->sib_scale);
	}

	// XOP code condition
	if (x86->xop_cc != X86_XOP_CC_INVALID) {
		printf("\txop_cc: %u\n", x86->xop_cc);
	}

	// SSE code condition
	if (x86->sse_cc != X86_SSE_CC_INVALID) {
		printf("\tsse_cc: %u\n", x86->sse_cc);
	}

	// AVX code condition
	if (x86->avx_cc != X86_AVX_CC_INVALID) {
		printf("\tavx_cc: %u\n", x86->avx_cc);
	}

	// AVX Suppress All Exception
	if (x86->avx_sae) {
		printf("\tavx_sae: %u\n", x86->avx_sae);
	}

	// AVX Rounding Mode
	if (x86->avx_rm != X86_AVX_RM_INVALID) {
		printf("\tavx_rm: %u\n", x86->avx_rm);
	}

	// Print out all immediate operands
	count = cs_op_count(ud, ins, X86_OP_IMM);
	if (count) {
		printf("\timm_count: %u\n", count);
		for (i = 1; i < count + 1; i++) {
			int index = cs_op_index(ud, ins, X86_OP_IMM, i);
			printf("\t\timms[%u]: 0x%" PRIx64 "\n", i, x86->operands[index].imm);
			if (x86->encoding.imm_offset != 0) {
				printf("\timm_offset: 0x%x\n", x86->encoding.imm_offset);
			}
			
			if (x86->encoding.imm_size != 0) {
				printf("\timm_size: 0x%x\n", x86->encoding.imm_size);
			}
		}
	}

	if (x86->op_count)
		printf("\top_count: %u\n", x86->op_count);

	// Print out all operands
	for (i = 0; i < x86->op_count; i++) {
		cs_x86_op *op = &(x86->operands[i]);

		switch((int)op->type) {
			case X86_OP_REG:
				printf("\t\toperands[%u].type: REG = %s\n", i, cs_reg_name(handle, op->reg));
				break;
			case X86_OP_IMM:
				printf("\t\toperands[%u].type: IMM = 0x%" PRIx64 "\n", i, op->imm);
				break;
			case X86_OP_MEM:
				printf("\t\toperands[%u].type: MEM\n", i);
				if (op->mem.segment != X86_REG_INVALID)
					printf("\t\t\toperands[%u].mem.segment: REG = %s\n", i, cs_reg_name(handle, op->mem.segment));
				if (op->mem.base != X86_REG_INVALID)
					printf("\t\t\toperands[%u].mem.base: REG = %s\n", i, cs_reg_name(handle, op->mem.base));
				if (op->mem.index != X86_REG_INVALID)
					printf("\t\t\toperands[%u].mem.index: REG = %s\n", i, cs_reg_name(handle, op->mem.index));
				if (op->mem.scale != 1)
					printf("\t\t\toperands[%u].mem.scale: %u\n", i, op->mem.scale);
				if (op->mem.disp != 0)
					printf("\t\t\toperands[%u].mem.disp: 0x%" PRIx64 "\n", i, op->mem.disp);
				break;
			default:
				break;
		}

		// AVX broadcast type
		if (op->avx_bcast != X86_AVX_BCAST_INVALID)
			printf("\t\toperands[%u].avx_bcast: %u\n", i, op->avx_bcast);

		// AVX zero opmask {z}
		if (op->avx_zero_opmask != false)
			printf("\t\toperands[%u].avx_zero_opmask: TRUE\n", i);

		printf("\t\toperands[%u].size: %u\n", i, op->size);

		switch(op->access) {
			default:
				break;
			case CS_AC_READ:
				printf("\t\toperands[%u].access: READ\n", i);
				break;
			case CS_AC_WRITE:
				printf("\t\toperands[%u].access: WRITE\n", i);
				break;
			case CS_AC_READ | CS_AC_WRITE:
				printf("\t\toperands[%u].access: READ | WRITE\n", i);
				break;
		}
	}

	// Print out all registers accessed by this instruction (either implicit or explicit)
	if (!cs_regs_access(ud, ins,
				regs_read, &regs_read_count,
				regs_write, &regs_write_count)) {
		if (regs_read_count) {
			printf("\tRegisters read:");
			for(i = 0; i < regs_read_count; i++) {
				printf(" %s", cs_reg_name(handle, regs_read[i]));
			}
			printf("\n");
		}

		if (regs_write_count) {
			printf("\tRegisters modified:");
			for(i = 0; i < regs_write_count; i++) {
				printf(" %s", cs_reg_name(handle, regs_write[i]));
			}
			printf("\n");
		}
	}

	if (x86->eflags || x86->fpu_flags) {
		for(i = 0; i < ins->detail->groups_count; i++) {
			if (ins->detail->groups[i] == X86_GRP_FPU) {
				printf("\tFPU_FLAGS:");
				for(i = 0; i <= 63; i++)
					if (x86->fpu_flags & ((uint64_t)1 << i)) {
						printf(" %s", get_fpu_flag_name((uint64_t)1 << i));
					}
				printf("\n");
				break;
			}
		}

		if (i == ins->detail->groups_count) {
			printf("\tEFLAGS:");
			for(i = 0; i <= 63; i++)
				if (x86->eflags & ((uint64_t)1 << i)) {
					printf(" %s", get_eflag_name((uint64_t)1 << i));
				}
			printf("\n");
		}
	}

	printf("\n");
}

static void decompile()
{
#define X86_CODE64 "\x55\x48\x8b\x05\xb8\x13\x00\x00\xe9\xea\xbe\xad\xde\xff\x25\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"
#define X86_CODE16 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89\x67\x00\x00\xb4\xc6\x66\xe9\xb8\x00\x00\x00\x67\xff\xa0\x23\x01\x00\x00\x66\xe8\xcb\x00\x00\x00\x74\xfc"
#define X86_CODE32 "\x8d\x4c\x32\x08\x01\xd8\x81\xc6\x34\x12\x00\x00\x05\x23\x01\x00\x00\x36\x8b\x84\x91\x23\x01\x00\x00\x41\x8d\x84\x39\x89\x67\x00\x00\x8d\x87\x89\x67\x00\x00\xb4\xc6\xe9\xea\xbe\xad\xde\xff\xa0\x23\x01\x00\x00\xe8\xdf\xbe\xad\xde\x74\xff"

	struct platform platforms[] = {
		{
			CS_ARCH_X86,
			CS_MODE_16,
			(unsigned char *)X86_CODE16,
			sizeof(X86_CODE16) - 1,
			"X86 16bit (Intel syntax)"
		},
		{
			CS_ARCH_X86,
			CS_MODE_32,
			(unsigned char *)X86_CODE32,
			sizeof(X86_CODE32) - 1,
			"X86 32 (AT&T syntax)",
			CS_OPT_SYNTAX,
			CS_OPT_SYNTAX_ATT,
		},
		{
			CS_ARCH_X86,
			CS_MODE_32,
			(unsigned char *)X86_CODE32,
			sizeof(X86_CODE32) - 1,
			"X86 32 (Intel syntax)"
		},
		{
			CS_ARCH_X86,
			CS_MODE_64,
			(unsigned char *)X86_CODE64,
			sizeof(X86_CODE64) - 1,
			"X86 64 (Intel syntax)"
		},
	};

	uint64_t address = 0x1000;
	cs_insn *insn;
	int i;
	size_t count;

	for (i = 0; i < sizeof(platforms)/sizeof(platforms[0]); i++) {
		cs_err err = cs_open(platforms[i].arch, platforms[i].mode, &handle);
		if (err) {
			printf("Failed on cs_open() with error returned: %u\n", err);
			abort();
		}

		if (platforms[i].opt_type)
			cs_option(handle, platforms[i].opt_type, platforms[i].opt_value);

		cs_option(handle, CS_OPT_DETAIL, CS_OPT_ON);

		count = cs_disasm(handle, platforms[i].code, platforms[i].size, address, 0, &insn);
		if (count) {
			size_t j;

			printf("****************\n");
			printf("Platform: %s\n", platforms[i].comment);
			print_string_hex("Code:", platforms[i].code, platforms[i].size);
			printf("Disasm:\n");

			for (j = 0; j < count; j++) {
				printf("0x%" PRIx64 ":\t%s\t%s\n", insn[j].address, insn[j].mnemonic, insn[j].op_str);
				print_insn_detail(handle, platforms[i].mode, &insn[j]);
			}
			printf("0x%" PRIx64 ":\n", insn[j-1].address + insn[j-1].size);

			// free memory allocated by cs_disasm()
			cs_free(insn, count);
		} else {
			printf("****************\n");
			printf("Platform: %s\n", platforms[i].comment);
			print_string_hex("Code:", platforms[i].code, platforms[i].size);
			printf("ERROR: Failed to disasm given code!\n");
			abort();
		}

		printf("\n");

		cs_close(&handle);
	}
}

再编写v语言main.v

#flag -I @VMODROOT/
// #flag -I /home/znw/src/capstone/include/
// #flag -L /home/znw/src/capstone/
#flag -l capstone
#flag @VMODROOT/demo.o

#include "demo.h"

fn C.decompile()

pub fn main() {
	C.decompile()
}

编译:

v .

v -cc gcc .

v -cc clang .

编译与运行均正常。但存在的问题:指定的头文件路径和链接库默认情况下都不起作用,gcc和clang可以编译,运行时程序崩溃。发现最终程序变得比较大,估计是将4.0.2和5.0.3的库混合了,暂时存疑。

标签:case,调用,return,X86,printf,EFLAGS,反汇编,capstone,x86
From: https://www.cnblogs.com/soarowl/p/17983334

相关文章

  • arcengine GP调用PolygonToLine 报错 -2147467259
    这个原因是传参数问题;GP调用面转线工具时,不能利用该方式传入参数IGpValueTableObjectgpValueTableObject=newGpValueTableObject();//对一个及以上要素类进行相交运算gpValueTableObject.SetColumns(2);objecto1=pFeatureClass2;//输入IFeatureC......
  • vue-helper 点击跳转插件 在 methods里面互相调用函数,会产生两个函数definitions ,然后
    vue-helper点击跳转插件在methods里面互相调用函数,会产生两个函数definitions,然后就回弹出框让你选择原因:换了台电脑,又从新配置下vscode"editor.gotoLocation.multipleTypeDefinitions":"goto","editor.gotoLocation.multipleReferences":"goto","editor.got......
  • .NET 6 ASP.NET Core API 项目依赖注入一个全局对象,确保全局只实例化一次,调用的都是此
    在.NET6中,实现全局单例服务的方法是通过内置在ASP.NETCore中的依赖注入(DI)容器来完成的。DI容器负责创建和管理服务的实例,包括控制它们的生命周期。对于单例服务,DI容器将确保在应用程序的整个生命周期内只创建服务的一个实例,并且所有对该服务的请求都会返回这个单一的实例。以下......
  • .NET 6 实现一个任务队列,且在不同线程中调用队列,队列始终都是串行执行
    在.NET6中,要实现一个任务队列,确保队列中的任务始终串行执行,即使它们是由不同线程调用的,你可以使用Channel<T>结合Task.Run或者更简单地使用BlockingCollection<T>与Task.Factory.StartNew或async/await模式。不过,为了保持代码的简洁性和现代性,我会推荐使用Channel<T>结合async/aw......
  • ILRuntime是如何与Unity互相调用的
    ILRuntime是一个跨平台CLR实现,它可以在多个平台上运行C#代码,包括Android、iOS、Windows、Linux等等。ILRuntime的实现方式是将C#代码编译成IL代码,然后在运行时通过JIT或AOT的方式将IL代码转换为机器代码,从而实现跨平台的效果。ILRuntime的主要功能包括热更新、动态加载、代码加密......
  • 若依框架解读(微服务版)——2.模块间的调用逻辑(ruoyi-api模块)(OpenFeign)(@innerAuth)
    模块之间的关系我们可以了解到一共有这么多服务,我们先启动这三个服务其中rouyi–api模块是远程调用也就是提取出来的openfeign的接口ruoyi–commom是通用工具模块其他几个都是独立的服务ruoyi-api模块api模块当中有几个提取出来的OpenFeign的接口分别为文件,日志,用户服务......
  • GDB调试之直接调用函数 (十九)
    常用命令:p表达式:求表达式的值并显示结果值。表达式可以包括对正在调试的程序中的函数的调用,即使函数返回值是void,也会显示。call表达式:求表达式的值并显示结果值,如果是函数调用,返回值是void的话,不显示void返回值。调试代码如下:#include<iostream>#include<cstring>usin......
  • [AHK2] wt调用命令
    最近在研究mc服务器,一般启动时使用bat文件就可以,但是我想在终端中运行而不是在cmd中。查了wt和pwsh的文档写出了下面的脚本。作用仅仅是在wt中运行java这条命令。脚本包括一些变量,其中:reuse表示是否打开一个新的wt实例。headC表示在调用jar前运行的powershell命令。javaC中......
  • 【解决方案】如何使用 Http API 代替 OpenFeign 进行远程服务调用
    目录前言一、何为OpenFeign1.1@FeignClient注解1.2注意事项二、常见的HttpAPI2.1Apache2.2Okhttp2.3Hutool三、RestTemplate3.1详解.execute()四、文章小结前言看到标题大家可能会有点疑惑吧:OpenFeign不是挺好用的吗?尤其是微服务之间的远程调用,平时用的也挺习惯的,为啥要替换呢......
  • Linux 文件被进程调用情况下误删文件修复
    具体的原理为:当进程打开了某个文件时,只要该进程保持打开该文件,即使将文件删除,它依然存在于磁盘中。进程并不知道文件已经被删除,它仍然可以通过打开该文件时提供给它的文件描述符进行读取和写入。除了该进程之外,这个文件是不可见的,因为已经删除了其相应的目录索引节点。......