首页 > 编程语言 >红黑树以及JAVA实现(二)

红黑树以及JAVA实现(二)

时间:2022-08-14 10:45:12浏览次数:91  
标签:Node right JAVA 删除 实现 color 红黑树 节点 left

目录

红黑树的删除

红黑树的删除相对于插入,会复杂很多。

我们分情况讨论

1. 删除节点为叶子节点

分两种情况,删除节点是红色节点和删除节点为黑色节点

1.1 删除节点为红色节点

如果是红色节点,我们可以直接删除,因为删除红色叶子节点并不会影响整体红黑树的结构

1.2 删除节点为黑色

假设左边黑色节点为要删除的叶子结点D,则一共有5种情况。如下图所示。因为左边支路上有一个黑色节点。所以右边支路上也要有一个黑色节点。

红黑树.png

1.2.1 要删除的节点D是黑色,D的兄弟节点B也是黑色没有侄子节点

其实这里我们可以回想一下2-3-4树是怎么删除的,这里的情况就相当于2-3-4树删除的兄弟节点和自己都是2节点的情况,这个时候我们就要和父节点接过来的一个元素构成一个4节点,然后再执行删除操作。

在红黑树中我们不需要考虑父节点是一个2节点还是3、4节点,如果是2节点造成的空位,我们只需要交给递归的操作去平衡就可以了。

image.png

1.2.2 要删除的节点D是黑色,D的兄弟节点有一个红色的右子节点

这种情况可以对应到2-3-4的,兄弟节点是非2节点,这样我们可以从兄弟节点借一个元素过来,然后我们再删除。

image.png

1.2.3 要删除的节点D是黑色,D的兄弟节点有一个红色的左子节点

这种情况我们只需要对B进行一个右旋,就可以将问题转化为1.2.2的问题然后再进行操作即可

1.2.4 要删除的节点D是黑色,D的兄弟节点B有两个红色节点

处理方式和1.2.2相同

1.2.5 要删除的节点D是黑色,D的兄弟节点是红色且有两个黑色子节点

这种情况,我们根据红黑色定义可以推断出P肯定为黑色,我们只需要对P进行一个左旋

image.png

这个时候我们发现删除D的问题就转化为了1.2.1的情况,之后我们根据1.2.1的方式去进行处理即可

上面只是写了删除节点为左节点的情况,再进行删除右节点的时候思路也是一样的,只不过旋转的时候是反过来的,这里就没必要赘述了。如果还是不清楚,可以参考下方的代码,并且配合着2-3-4的删除思路来食用,效果更好

2. 删除节点为非叶子节点

2.1 删除节点只有一个子树

根据红黑树定义,可以知道这个子树只有一个元素,因为只要元素有两个以上,那么肯定就会被平衡。

所以这种情况就比较简单,我们只需要用这个唯一的后继节点的键值覆盖掉父节点,然后再将旧的后继节点删除即可

如下图,我们要删除节点2

image.png

2.2 删除节点有两个子树

寻找后继节点

这种情况我们就没办判断子树的高度是多少,那么我们怎么找后继节点呢?

一般就是寻找一个key最接近删除节点的节点作为后继节点进行替换,我们可以选择右子树中最接近的也可以是左子树中最接近的节点

而后继节点又存在两种情况

后继节点无子节点

无子节点的话,我们只需要按照2.1中的操作,用后继节点替换被删除节点,然后删除直接删除掉后继节点即可

后继节点有一个子节点

用于替换的节点也会出现有一个子节点的情况,譬如下图:

image.png

这里假如,我们要删除11,这个时候我去寻找右子树中最小的元素来替换它,这个时候会找到12,但是12是有一个右子点的。

那么这个后继元素的右子树会不会有多个元素呢?并不会,只要再添加一个元素无论是大于12还是小于12,大于12会破坏平衡,进行旋转变色以后,会重新定位后继节点,这个后继节点显然是不会有子节点的,如果是小于12,那么这个小于12的元素自然就会被选为后继节点而不是12.

那么这种情况,其实也很简单,先按照正常来,将被删除节点替换为后继节点,然后再删除后继节点,但是这个后继节点不能直接删除,这个问题会被转化为2.1中的删除问题,用2.1的方式删除掉后继节点即可。

代码

下面是具体的红黑树代码,加入了大量注释方便了理解

package datastructure;

import java.util.Scanner;

/**
 * @Description 红黑树
 * @Author weiyifei
 * @date 2022/6/10
 */
public class RedBlackBST<Key extends Comparable<Key>, Value> {

    private static final boolean Red = true;

    private static final boolean Black = false;

    private Node root;


    private class Node {
        Key key;
        Value value;
        Node left, right, parent;
        int N;
        boolean color;

        public Node(Key key, Value value, Node parent, int n, boolean color) {
            this.key = key;
            this.value = value;
            N = n;
            this.color = color;
            this.parent = parent;
        }

    }

    public RedBlackBST() {

    }

    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == Red;
    }

    //左旋
    Node rotateLeft(Node h) {
        Node x = h.right;
        h.right = x.left;
        if(h.right!=null){
            h.right.parent = h;
        }
        x.parent = h.parent;
        h.parent = x;
        x.left = h;
        if(x.left!=null){
            x.left.parent = x;
        }
        if(x.parent!=null){
            int cmp = x.parent.key.compareTo(x.key);
            if(cmp>0) x.parent.left = x;
            else x.parent.right = x;
        }
        x.N = h.N;
        h.N = 1 + size(h.left) + size(h.right);
        show();
        return x;
    }

    //右旋
    Node rotateRight(Node h) {
        Node x = h.left;
        h.left = x.right;
        if(h.left!=null){
            h.left.parent = h;
        }
        x.parent = h.parent;
        h.parent = x;
        x.right = h;
        if(x.right!=null){
            x.right.parent = x;
        }
        if(x.parent!=null){
            int cmp = x.parent.key.compareTo(x.key);
            if(cmp>0) x.parent.left = x;
            else x.parent.right = x;
        }
        x.N = h.N;
        h.N = 1 + size(h.left) + size(h.right);
        show();
        return x;
    }

    private void put(Key key, Value val) {
        root = put(root, null, key, val);
        root.color = Black;
    }

    private Node put(Node h, Node p, Key key, Value val) {
        if (h == null) {
            return new Node(key, val, p, 1, Red);
        }
        //当插入的时候,发现路径上有-4节点,
        if (isRed(h.left) && isRed(h.right)) flipColors(h);
        //递归搜索树,直到找到相同的key,修改,或者搜索到底层,进行插入。
        int cmp = key.compareTo(h.key);
        if (cmp < 0) h.left = put(h.left, h, key, val);
        else if (cmp > 0) h.right = put(h.right, h, key, val);
        else h.value = val;

        //判断红黑,进行旋转,调整树的平衡
        if (isRed(h.right) && isRed(h.right.right)) {
            h.right.color = h.color;
            h.color = Red;
            h = rotateLeft(h);
        }
        if (isRed(h.right) && isRed(h.right.left)) {
            //RL问题,先右旋,将问题转换为RR
            h.right = rotateRight(h.right);
            //变色
            h.right.color = h.color;
            h.color = Red;
            //再左旋
            h = rotateLeft(h);
        }
        if (isRed(h.left) && isRed(h.left.left)) {
            h.left.color = h.color;
            h.color = Red;
            h = rotateRight(h);
        }
        if (isRed(h.left) && isRed(h.left.right)) {
            //LR问题,先左旋,将问题转换为LL问题
            h.left = rotateLeft(h.left);
            //变色
            h.left.color = h.color;
            h.color = Red;
            //再右旋
            h = rotateRight(h);
        }

        h.N = size(h.left) + size(h.right) + 1;

        return h;
    }

    private boolean del(Key key) {
        if (null != key) {
            if (null != root) {
                return del(key, root, null);
            }
        }
        return false;
    }

    private boolean del(Key key, Node cur, Node parent) {
        if (null != cur) {
            int cmp = key.compareTo(cur.key);
            //如果key>当前节点,向右检索
            if (cmp > 0) {
                return del(key, cur.right, cur);
            }
            //如果key<当前节点,想左检索
            if (cmp < 0) {
                return del(key, cur.left, cur);
            }
            //当前节点就是要删除的节点
            if (cmp == 0) {
                //删除的节点有两个子节点
                if (null != cur.left && null != cur.right) {
                    delTowChildren(cur);
                    return true;
                }else {
                    //如果没有子节点,直接修复平衡,然后删除
                    if(null==cur.left&&null==cur.right){
                        delLeafFix(cur);
                        if(cur.key.compareTo(parent.key)>0){
                            parent.right = null;
                        }else {
                            parent.left = null;
                        }
                        return true;
                    }else { //如果有一个子节点
                        dleOneChildNode(cur);
                        return true;
                    }

                }
            }

        }
        return false;
    }

    //当被删除节点有两个子节点的情况下的处理
    private void delTowChildren(Node cur) {
        //获取后继节点用于替换被删除节点
        Node replacement = successor(cur);
        //替换节点的左右子节点都是null
        if (null == replacement.right && null == replacement.left) {
            delLeafNode(cur, replacement);
        }else {//用于替换的节点,会存在拥有一个子节点的情况
            cur.key = replacement.key;
            cur.value = replacement.value;
            dleOneChildNode(replacement);
        }
    }


    private void dleOneChildNode(Node delNode) {
        //使用后继节点进行代替
        Node replacement = (null==delNode.left)?delNode.right:delNode.left;
        delLeafNode(delNode,replacement);
    }

    private void delLeafNode(Node cur, Node replacement) {
        cur.key = replacement.key;
        cur.value = replacement.value;
        //进行修复
        delLeafFix(replacement);
        //然后删除
        if (replacement == replacement.parent.right) {
            replacement.parent.right = null;
        } else {
            replacement.parent.left = null;
        }
    }

    /**
     * @return void
     * @Description 删除叶子节点后的修复
     * @Author weiyifei
     */
    private void delLeafFix(Node delNode) {
        //只处理删除节点是黑色的情况,如果是红色则直接删除即可
        while (delNode != root && Black == delNode.color) {
            Node par = delNode.parent;
            Node bro = getBrother(delNode);

            if (delNode.key.compareTo(par.key) > 0) { //被删除节点是右叶子节点
                //如果叶子节点是黑色且不是root,那么他的兄弟节点必然存在,这是由红黑树5定律决定的
                if (Red == bro.color) { //如果兄弟节点是红色,可以推断出其必有两个黑色子节点
                    bro.color = Black;
                    par.color = Red;
                    rotateRight(par);
                } else {
                    if (null == bro.left && null == bro.right) {//如果兄弟节点也是叶子节点,那么直接让兄弟和父节点构成一个-3节点即可
                        bro.color = Red;
                        delNode = par;
                    } else {
                        if (null != bro.left && Red == bro.left.color) {
                            //两种情况,一种是兄弟节点红色, 且有两个节点
                            //另一种是兄弟节点黑色,只有左节点
                            //这两种的处理方式相同
                            bro.color = par.color;
                            par.color = Black;
                            bro.left.color = Black;
                            rotateRight(par);
                            break;
                        } else { //兄弟节点黑色, 但是只有右子节点
                            //这里对bro进行左旋加变色,将情况转换为上面的情况,再进行处理
                            bro.right.color = Black;
                            bro.color = Red;
                            rotateLeft(bro);
                        }
                    }
                }
            } else { //删除的是左节点,和上面方式相同
                if (Red == bro.color) {
                    bro.color = Black;
                    par.color = Red;
                    rotateLeft(par);
                } else {
                    if (null == bro.left && null == bro.right) {
                        bro.color = Red;
                        delNode = par;
                    } else {
                        if (null != bro.right && Red == bro.right.color) {
                            bro.color = par.color;
                            par.color = Black;
                            bro.right.color = Black;
                            rotateLeft(par);
                            break;
                        } else {
                            bro.left.color = Black;
                            bro.color = Red;
                            rotateRight(bro);
                        }
                    }

                }

            }
        }
        delNode.color = Black;
    }

    private void inOrderTraveral(){
        inOrderTraveral(root);
    }

    //中序遍历
    private void inOrderTraveral(Node node){
        if(node==null){
            return;
        }
        inOrderTraveral(node.left);
        System.out.println(node.key+"");
        inOrderTraveral(node.right);
    }


    public static void main(String[] args) {
        RedBlackBST<Integer, Integer> bst = new RedBlackBST<>();
        //使用create方法构造红黑树
//        bst.creat(0,1,2,3,4,5,6,7,8,13,12,14,11);
//        bst.show();
        Scanner scanner = new Scanner(System.in);
        while (true){
            System.out.println("请选择操作");
            System.out.println("1.插入\n2.删除\n3.中序遍历\n4.输出树形结构");
            int i = scanner.nextInt();
            switch (i){
                case 1:
                    System.out.println("请输入要插入的key");
                    int num = scanner.nextInt();
                    bst.put(num,0);
                    System.out.println("插入完成");
                    System.out.println("当前树如下");
                    bst.show();
                    break;
                case 2:
                    System.out.println("请输入要删除的key");
                    int key = scanner.nextInt();
                    bst.del(key);
                    System.out.println("删除之后的树");
                    bst.show();
                    break;
                case 3:
                    System.out.println("中序遍历结果");
                    bst.inOrderTraveral();
                    break;
                case 4:
                    System.out.println("树结构如下");
                    bst.show();
                    break;
                default:
                    System.out.println("输入错误请重新选择");
            }
        }
    }

    private void creat(Value value,Key ... nums) {
        for (Key num : nums) {
            put(num,value);
            show();
        }
    }

    /**
     * @return datastructure.RedBlackBST<Key, Value>.Node
     * @Description 获取的兄弟节点
     * @Author weiyifei
     */
    private Node getBrother(Node node) {
        if (null == node) {
            return node;
        }
        Node par = node.parent;
        if (null == par) {
            return null;
        }
        int cmp = node.key.compareTo(par.key);
        if (cmp > 0) return par.left;
        else return par.right;
    }

    //寻找被删除节点的后继节点,即,查找红黑树中数据值大于该节点的最小节点
    private Node successor(Node node) {
        if (node == null) {
            return null;
        }
        Node p = node.right;
        while (null != p.left) {
            p = p.left;
        }
        return p;
    }


    //颜色转换,专门用哦过来处理一个节点的两个红色节点的颜色转换问题
    void flipColors(Node x) {
        x.color = Red;
        x.left.color = Black;
        x.right.color = Black;
    }

    public int size() {
        return size(root);
    }

    public int size(Node x) {
        if (x == null) return 0;
        else return x.N;
    }

    // 用于获得树的层数
    public int getTreeDepth(Node root) {
        return root == null ? 0 : (1 + Math.max(getTreeDepth(root.left), getTreeDepth(root.right)));
    }

    private void writeArray(Node currNode, int rowIndex, int columnIndex, String[][] res, int treeDepth) {
        // 保证输入的树不为空
        if (currNode == null) return;
        // 先将当前节点保存到二维数组中
        res[rowIndex][columnIndex] = currNode.key+""+(currNode.color==Red?"r":"b");

        // 计算当前位于树的第几层
        int currLevel = ((rowIndex + 1) / 2);
        // 若到了最后一层,则返回
        if (currLevel == treeDepth) return;
        // 计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)
        int gap = treeDepth - currLevel - 1;

        // 对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值
        if (currNode.left != null) {
            res[rowIndex + 1][columnIndex - gap] = "/";
            writeArray(currNode.left, rowIndex + 2, columnIndex - gap * 2, res, treeDepth);
        }

        // 对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值
        if (currNode.right != null) {
            res[rowIndex + 1][columnIndex + gap] = "\\";
            writeArray(currNode.right, rowIndex + 2, columnIndex + gap * 2, res, treeDepth);
        }
    }

    public void show(){
        show(root);
    }

    public void show(Node root) {
        if (root == null) System.out.println("EMPTY!");
        // 得到树的深度
        int treeDepth = getTreeDepth(root);

        // 最后一行的宽度为2的(n - 1)次方乘3,再加1
        // 作为整个二维数组的宽度
        int arrayHeight = treeDepth * 2 - 1;
        int arrayWidth = (2 << (treeDepth - 2)) * 3 + 1;
        // 用一个字符串数组来存储每个位置应显示的元素
        String[][] res = new String[arrayHeight][arrayWidth];
        // 对数组进行初始化,默认为一个空格
        for (int i = 0; i < arrayHeight; i ++) {
            for (int j = 0; j < arrayWidth; j ++) {
                res[i][j] = " ";
            }
        }

        // 从根节点开始,递归处理整个树
        // res[0][(arrayWidth + 1)/ 2] = (char)(root.val + '0');
        writeArray(root, 0, arrayWidth/ 2, res, treeDepth);

        // 此时,已经将所有需要显示的元素储存到了二维数组中,将其拼接并打印即可
        for (String[] line: res) {
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < line.length; i ++) {
                sb.append(line[i]);
                if (line[i].length() > 1 && i <= line.length - 1) {
                    i += line[i].length() > 4 ? 2: line[i].length() - 1;
                }
            }
            System.out.println(sb.toString());
        }
    }

}

后记

红黑树的删除初看很复杂,如果我们只是闷头去背情况,肯定是摸不着头脑,但实际上我们发现,其内核本质上还是2-3-4的操作,,很多比较麻烦的,我们都是进行一一拆解,转化为最简单的情况,最后在进行处理。
一旦你理解了其中的逻辑,就会发现红黑树的删除也就那么回事儿。

参考链接

红黑树·删除操作,详细图解[CSDN]
数据结构:红黑树的删除[知乎]
图解:什么是红黑树?[知乎]

标签:Node,right,JAVA,删除,实现,color,红黑树,节点,left
From: https://www.cnblogs.com/qishanmozi/p/16584943.html

相关文章

  • java学习记录
    # 第一个SpringBoot项目https://www.jb51.net/article/223251.htm#_label0#pom用阿里云源```<repositories><repository><id>public</id><name>......
  • JavaScript 对 DOM 元素排序
    <!DOCTYPEhtml><html><head><styletype="text/css">#wrapdiv{float:left;}#wrap:after{......
  • Java 中使用 public,private 和 protected 修饰的方法
    大部分情况下我们都使用这几个修饰来修饰方法。当然对类来说,相信大部分都默认使用Public,大部分人都不去纠结。Public:简单来说就是谁都可以访问,你写个类除了特殊要求,当......
  • 递归回调的实现
    背景异步树展开如果要实现展开回调比较困难,因为展开的过程是异步的。前端:js引擎虽然是单线程执行,但是操作ui的线程是单独的,树的展开过程,就经历了js引擎线程+ui线程的过程......
  • JavaWeb阶段性项目1:系统的servlet优化5
    前置知识前置准备知识准备已掌握JavaSE/MySQL/JDBC+HTML/CSS/JavaScript基础并已完成了Javaweb前置知识的学习01-JavaWeb-HTML初识02-JavaWeb-CSS初识03-JavaWeb-Ja......
  • JavaWeb阶段性项目1:Servlet-api、mvc-service引入、IOC和DI
    Servlet-apiservlet类的继承与实现结构Servlet生命周期:实例化、初始化、服务、销毁init()方法抽象类GenericServlet实现了Servlet接口中的init方法,初始化Servlet......
  • python中实现依据序列名称排序并输出
     001、(base)root@PC1:/home/test2#lsa.fastatest.py(base)root@PC1:/home/test2#cata.fasta##测试fasta文件>gene2mycAGCTGCCTAAGC......
  • 两种获取链接响应码的方法 (python实现)
    两种获取链接响应码的方法(python实现)背景:工作中需要测试某个包是否正常上传到了yum仓库,所以需要检测对应地址是否有效,发现之前使用requests库写的代码出奇的慢,所以......
  • Java第七周学习总结
    本周总结一.本周所做:1.本周学习了Java的枚举的知识包括内部类中使用枚举,迭代枚举元素,在switch中使用枚举类  还学习了接口的相关知识:      ......
  • JAVA学习
    抽象方法的作用:作为通用方法,在父类中定义;要求子类,必须实现这个方。 1.抽象类可以有自己的构造方法2.抽象类可以有具体的方法。3.包含抽象类方法的类一定是抽象类,必须......